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Abstract 

MiRNAs are potent regulators of gene expression, and most miRNAs have from several to several 
thousands of gene targets. Validating the numerous gene targets of a given miRNA remains 
challenging despite the existence of various tools and databases that predict candidate 
gene-miRNA pairs. In the present study, we present a high-throughput but flexible method that 
applies a PCR-based application to simulate the binding of miRNAs to their gene targets. Using 
hsa-miR-377 as an illustrative example, our method was able to identify 13 potential targets of 
hsa-miR-377. Moreover, our results include 2 genes (SOD2 and PPM1A) that have already been 
verified as targets of hsa-miR-377. Our method may provide an alternative way of identifying the 
gene targets of miRNAs for future research. 
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Introduction 
Mature miRNAs are a class of small sin-

gle-stranded RNAs roughly 20 nts long. They are po-
tent regulators of gene expression and are predicted 
to modulate the expression of several to several 
thousands of genes. MiRNAs act through 
pair-matching of their seed sequence to the 
3‘-untranslated regions of gene transcripts [1]. Iden-
tifying the gene targets of miRNAs is crucial for illus-
trating the biological mechanisms underlying these 
powerful regulatory molecules. Elucidating the role of 
miRNA regulation on gene expression has contrib-
uted to the mechanistic understanding of cardiogene-
sis [2], skeletal muscle proliferation and differentia-
tion [3], drug resistance [4], and cancer metastasis [5]. 
Dysfunction of miRNA-gene targeting may lead to 
many diseases such as cancer [5], complex psychiatric 
disorder [6], and addiction [7].  

While a number of computational algorithms 
have been published to predict the target genes of a 
given miRNA, huge discrepancies exist in the pre-
dicted results of these algorithms [8]. Although there 
are curated databases on miRNA-gene targeting rela-
tionships [9] (http://diana.cslab.ece.ntua.gr/ 
tarbase/), the validation of these various bioinfor-
matic predictions remains a challenge for researchers.  

In the present studies, we propose a novel 
PCR-based chip assay that can be used to supplement 
the existing approaches. It is based on the seed-match 
theory between miRNA sequences and the 3‘-UTR of 
their target mRNAs [10, 11]. Coupled with gene ex-
pression microarray, this PCR-based in-vitro ap-
proach can be used to quantify the binding ability of 
miRNAs to target mRNAs. 
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Methods and materials 
First-strand cDNA synthesis and the 3‘-UTR 
amplification of miR-377 target genes  

The total RNAs of normal human mesangial cells 
were extracted with TRIZOL (Invitrogen Corporation, 
Carlsbad, CA, USA). Details of cell culture are as de-
scribed previously [12]. As shown in Figure 1, total 
RNA was reversely transcribed to cDNA using a 
P-oligo-dT primer with a 5‘-overhanged sequence 
(5‘-GGCTAGTCTCGTGATCGA-3’). Then the cDNA 
mixture was used for PCR amplication using a tag 
primer (5‘-GGCTAGTCTCGTGATCGA-3‘) and 
hsa-miR-377 derived primer (5‘-ACAAAAGTTGCCT
TTGTGTgAT-3‘; the “g“ stands for a lock nucleotide 
acid) or its control primer with 3 mutations (a, c and t) 
in the underlined region complemented to 
hsa-miR-377 (5‘-ACAAATGTAGCGTTaGTcTGtT-3‘). 
PCR was performed as follows: 3 min at 95ºC fol-
lowed by 5 cycles of amplification (30 sec at 95ºC, 30 
sec at 45ºC, 2 min at 72 ºC), and another 30 cycles (30 
sec at 95ºC, 30 sec at 54ºC, 2 min at 72 ºC) for further 
amplification. 

Quantification of the amplified 3‘-UTRs in 
cDNA pools and identification of target genes 
of miR-377 

PCR products were labeled (Bioprimer DNA la-
beling System, Invitrogen) and hybridized with hu-
man expression microarrays (GeneChip Human Gene 
1.0 ST Array; Affymetrix, Santa Clara, CA, USA). The 
image data were analyzed by DNA-Chip Analyzer 
(http://www.dchip.org) to generate a normalized 
signal for each gene’s exon on the array. The potential 
target genes of hsa-miR-377 met the following criteria. 
Firstly they must have probes in 3‘-UTRs with a signal 
intensity of at least 1000. Secondly, they need to have 
probes in other regions (coding sequences (CDS) or 
5‘-UTR) with a signal intensity of less than 200. Fi-
nally, the ratio of the signal intensity of 3‘-UTRs be-
tween miR-377 derived primer PCR input and its 
control PCR input has to be greater than 10 for these 
miR-377 target genes. In the current microarray, the 
signal intensity of 200 suggests a moderate amount of 
capturing the PCR products using the primer sets. For 
the same gene, a >1000 value in the 3-UTR and <200 
value in other gene regions suggests an enrichment of 
3’-UTR targeting in the seed-containing primer set, 
implying a potential targeting between miR-377 seed 
sequence and the identified gene. 

Results 
In the present study, we are able to identify 13 

genes, as listed in Table 1 and Figure 2. Eight of them 
(over 60%) are also predicted to miR-377 targets [11, 

13-16]. Other genes with less stringent criteria are 
shown in the Supplementary Material: Table S1. A list 
of 16,319 transcripts were harvested by sorting the 
ratio of the 3’-UTR probe signal intensity between 
miR-377 derived primer PCR input and miR-377 mu-
tated primer PCR input (Supplementary Material: 
Table S2). The fasta sequences of the 3’-UTRs of tran-
scripts are retrieved from the ENSEMBL website 
(http://www.ensembl.org/index.html). By using the 
8-letter enrichment analysis of Sylmer, we find that 
“TTGTGTGA” as the seed of miR-377 is significantly 
enriched in the UTRs of the top transcripts (Figure 1). 

As shown in Figure 1, our method comprises of a 
first strand cDNA synthesis of the transcriptome and 
a subsequent PCR to amplify the 3‘-UTR regions us-
ing the miRNA-complement primers. The back-
ground noise is controlled by the PCR of another 
primer with a seed-mutated miRNA sequence cou-
pled with the tag primer. After the PCR procedure, 
the products are labeled and hybridized onto gene 
expression array. The levels of the signal-to-noise ra-
tios of the probes in the 3‘-UTRs of genes reflect their 
binding capability to miRNAs. 

Using hsa-miR-377 as an example, we coupled 
the tag primer with the primer complementary to the 
sequence of hsa-miR-377. In addition, the control PCR 
uses the tag primer and a primer with mismatches in 
the seed region of hsa-miR-377. By ranking the sig-
nal-to-noise ratio of amplified genes, we find that 
there is a significant enrichment of miR-377 seed 
(TTGTGTGA) in the 3‘-UTR of the ranked mRNAs 
using the Sylamer software [17]. Additionally, 8 of the 
aforementioned 13 genes were previously predicted 
to be miR-377 targets by various in-silico methods 
(Table 1 and Supplementary Material: Table S1). 
SOD2 (Supplementary Material: Table S2) and 
PPM1A (Table 1) have already been validated as tar-
gets of miR-377 in the previous studies [12]. 

 

Table 1: The target genes of hsa-miR-377 a. 

Gene Entrez id Ratio Target predictions 
ZRANB2 9406 305.73  
PITPNA 5306 161.58  
GCH1 2643 137.16 PITA 
CSE1L 1434 123.82  
PPM1A 5494 104.08 miRanda, PITA 
VTA1 51534 98.83 TargetScan_nonconserved 
KITLG 4254 96.78 TargetScan_nonconserved, PITA 
CLASP2 23122 87.43 miRanda, TargetScan_nonconserved, PITA 
SON 6651 64.23 miRanda, TargetScan_nonconserved, PITA 
RPP30 10556 59.19 TargetScan_nonconserved, PITA 
CLEC2D 29121 42.76  
EIF5B 9669 31.75 miRanda, TargetScan_conserved, PITA 
KLF6 1316 23.07  
a: Ratio is the ratio of the 3’-UTR probe signal intensity between miR-377 derived 
primer PCR input and miR-377 mutated primer PCR input. 
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Figure 1: The workflow of the PCR-based approach to identify miRNA target genes. 

 

 
Figure 2: Over-representative 3’-UTRs of the hsa-miR-377 target genes in the PCR. 

 

Discussions 
Using hsa-miR-377 as an example, we found 13 

genes that potential interact with hsa-miR-377, a 
miRNA associated with diabetes nephropathy [12] 
and cancer progression [18]. Among the identified 
target genes of hsa-miR-377, at least three [GCH1 [19], 
PPM1A [20-22] and KLF6 [23, 24]] were shown to be 
linked to the pathogenesis of diabetes and five [GCH1 
[25, 26], CSE1L [27], PPM1A [28], KITLG [29] and 
KLF6 [30]] were shown to be linked to the 

pathogenesis of cancer. These potential targets of 
hsa-miR-377 are likely to provide hints for future re-
search on the contribution of hsa-miR-377 in diabetes 
and cancers. 

The classic method for validating the gene tar-
gets of a miRNA is the luciferase reporter assay [31], 
which is designed to test whether or not there is a 
reduction in luciferase enzyme activity through the 
miRNA binding to the foreign sequence in the 
5’-flanking region of the luciferase gene. Although 
this method is accurate and thus has become the 
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standard method, it is also labor-intensive and 
low-throughput. Other high-throughput methods 
include the anti-miRNA knock down assay [32] and 
the immunoprecipitation-based chip (ChIP-chip) or 
sequencing assays (ChIP-Seq) [33]. While the an-
ti-miRNA knock down assay can generate a list of 
associated genes, it is hard to distinguish between the 
primary gene targets and other genes that are subse-
quently influenced by non-miRNA factors. The most 
recent Argonaute immunoprecipitation-based chip or 
sequencing arrays have become a very successful ap-
proach that can capture the miRNA and its gene tar-
gets simultaneously. However, it seems that only the 
most abundant miRNAs are suitable for this ap-
proach. 

Our method simulates in vivo binding between a 
miRNA and its targets. And it can be easily expanded 
to discover the differences in the gene regulation 
among the genome-wide miRNAs by comparing the 
PCR signals from different miRNA primer sets. This 
method can potentially be used to identify novel 
miRNA binding targets by employing next generation 
sequencing techniques to sequence the PCR products. 
However, there are some limitations to this system. 
For examples, the oligo-dT primer can’t pick up genes 
lacking 3‘-UTR sequences. And for some mature 
miRNAs with length fewer than 18 bps, this method 
may fail to design eligible primers due to the severe 
nonspecific PCR amplification events. 

In summary, our study uses a PCR-based ap-
proach to simulate the binding between miRNA and 
the 3‘-UTRs of their target genes. This technique is 
able to reveal novel target genes of a given miRNA in 
a high-throughput manner. Using human miR-377 as 
an example, our study shows that the top ranked 
target genes are significantly enriched with miR-377 
seed matched regions in their 3‘-UTRs. This approach 
may provide an alternative way of revealing the tar-
gets of miRNAs for future research. 

Supplementary Material 
Table S1: The list of genes with significant enrichment 
of the hsa-miR-377 seed-matched sequence in the 
3’-UTRs.  
Table S2: The gene list for Sylmer program.   
http://www.medsci.org/v11p1270s1.xls 
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