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Abstract 

Background: The study examined the difference in the expression of the receptor for activated C 
kinase 1 (RACK1) between anaesthesia with propofol and isoflurane in rats with myocardial 
ischemia-reperfusion injury (IRI). 
Methods: Male Sprague–Dawley rats were studied. Anaesthesia was induced with xylazine 20 µg/g 
by intraperitoneal injection and maintained with propofol or isoflurane. Myocardial IRI was induced 
by ligating the left anterior descending artery for 1 hour. Reactive oxygen species (ROS), 
cardiomyocyte apoptosis, the expression of RACK1 and toll-like receptor 4 (TLR4), and the heart 
injury score were compared between the two groups. 
Results: Cardiomyocyte apoptosis with ROS was significantly lower in the propofol group than in 
the isoflurane group. The propofol group had significantly higher RACK1 expression and lower 
TLR4 expression, compared with the isoflurane group (RACK1, 1970.50 ± 120.50 vs. 1350.20 ± 
250.30, p<0.05; TLR4, 980.50 ± 110.75 vs. 1275.50 ± 75.35, p<0.05). However, the heart injury 
scores in the two groups did not differ significantly (3.56 ± 0.29 vs. 4.33 ± 0.23 in the propofol and 
isoflurane groups, respectively, p=0.33). 
Conclusion: There were significant differences in inflammation and apoptosis, including the 
expression of RACK1 and TLR4, after myocardial IRI between the propofol and isoflurane groups. 
However, both groups had similar heart injury scores. 
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Introduction 
Ischemia-reperfusion injury (IRI) is defined as 

the tissue damage caused when the blood supply 
returns to a tissue after ischemia [1, 2]. The restoration 
of circulation after the absence of oxygen and 
nutrients from blood during the ischemic period 
paradoxically induces pathophysiological processes 
that include the accumulation of reactive oxygen 

species (ROS) and release of inflammatory cytokines, 
resulting in cell apoptosis [3-6]. Consequently, 
myocardial IRI produces cardiac injury, cardiac 
contractile dysfunction, and increased myocardial 
infarct size. 

 Recently, the receptor for activated C kinase 1 
(RACK1) was reported to perform an anti-apoptosis 
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role in cardiomyocytes after myocardial IRI [7-9]. It 
mediates protein kinase C (PKC) signal transduction 
in cardiomyocytes and its over-expression results in 
the suppression of apoptosis [10, 11]. 

Numerous studies have investigated the role of 
anaesthetic agents in myocardial IRI [13, 14]. 
However, the association between RACK1 and 
myocardial IRI with specific anaesthetic agents has 
not been investigated. 

We hypothesised that a difference in RACK1 
expression between intravenous and inhalation 
anaesthetic agents would exist in myocardial IRI. 
Therefore, this study examined the difference in the 
expression of RACK1 between propofol and 
isoflurane anaesthesia in the rat with myocardial IRI. 

Materials and Methods 
Experiment design 

The study was approved by the Konkuk 
University Institutional Animal Care and Use 
Committee (KU16071-1). Male Sprague–Dawley (SD) 
rats 6–8 weeks in age and weighing ~200 g were 
purchased from Orient Bio (Seongnam, Korea). The 
animal experiments followed the National Institutes 
of Health guidelines for care, and all animals were 
handled for 7 days before starting the experiments. 
Anaesthesia was induced by intraperitoneal injection 
of xylazine 20 µg/g (Rompun®, Bayer Korea, Korea). 
Anaesthesia was assessed by pinching the hind foot. 
Tracheal intubation was performed at surgery. A 
heating pad was placed on the surgery platform to 
maintain the rat body temperature during surgery. 
With the rat in a supine position, it was fastened to the 
platform with tape, and its tongue was pulled out 
with forceps. Intubation was performed using a 
1.77-inch-long 16 gauge catheter (BD, USA) inserted 
through the larynx to the bronchus. The correct 
position of the intubation catheter was confirmed by 
checking for symmetric chest expansion. A ventilator 
(Harvard Apparatus, Holliston, MA, USA) was 
connected to the intubation catheter and set to 1) a 
fraction of inspired oxygen (FiO2) of 0.5, 2) an 
inspiratory flow rate of 170 mL/minute, 3) a tidal 
volume of 6 mL/kg, and 4) a respiratory rate of 80 
breaths/minute [15]. The rats were randomly divided 
into propofol and isoflurane groups, in which 
anaesthesia was maintained with propofol or 
isoflurane, respectively. For propofol (Dongkook 
Pharmaceutical, Korea), a 10 mg/mL solution in a 50 
ml syringe was continuously administered using an 
infusion pump (Masterflex L/S peristaltic pump with 
Masterflex L/S easy load pump head and L/S tubing, 
Cole-Parmer Instrument, Vernon Hills, IL, USA) at 5 
µL/g/ hour (50 µg/g/ hour) via a tail vein. The 

isoflurane (JW Pharmaceutical, Korea) was 
administered using a vaporiser at 3% volume via the 
intubation catheter. 

IRI on heart 
One hour after inducing anaesthesia, the rat was 

carefully turned so that it was lying on its right side 
and facing its left side. The chest was shaved and 
alcohol and povidone (Firson, Korea) were applied to 
prevent contamination of the surgical field. A left 
thoracotomy was performed between the 3rd and 4th 
ribs, and the skin and muscle were dissected carefully. 
A chest retractor was placed in the incision and the 
pericardium was picked up gently with forceps. The 
left anterior descending artery (LAD) was identified 
between the pulmonary artery and left auricle and 
ligated with 4-0 silk (Covidien, Dublin, Ireland). The 
cardiac ischemia was evaluated as successful when 
the colour of the territory of the LAD changed to light 
red after ligation. The retractor was removed and the 
surgical field was covered with wet gauze for 1 hour. 
Then, the ligature around the LAD was released to 
allow reperfusion. Reperfusion was confirmed when 
the colour in the territory of the LAD changed to dark 
red. The surgical field was covered with wet gauze for 
4 hours under anaesthesia and the rats were 
sacrificed. After laparotomy, a 3 mL blood sample in 
an ethylenediaminetetraacetic acid (EDTA) tube was 
obtained from the hepatic vein to measure the ROS 
level. The heart was extracted to obtain 
cardiomyocytes and for histology and 
immunohistochemistry. 

Flow Cytometry 
The blood in the EDTA tube was transferred to a 

conical tube and diluted to 10 mL with 
phosphate-buffered saline (PBS; Gibco, USA). 
Peripheral blood mononuclear cells (PBMCs) were 
isolated from the blood using density-gradient 
centrifugation over a Biocoll gradient solution 
(Biochrom, German). The PBMCs were washed with 
fluorescence activated cell sorter (FACS) buffer [1% 
bovine serum albumin (BSA) and 0.01% NaN3 in PBS]. 
After washing the PBMCs, they were stained with 
2',7'-dichlorofluorescein diacetate (H2DCFDA, Life 
Technologies, USA), changing from non-fluorescent 
into fluorescent on oxidation, to detect intracellular 
ROS. The staining was performed for 30 minutes in 
the dark at room temperature and the sample was 
analysed on a flow cytometer. The data were analysed 
using FlowJo software (Tree Star, USA). 

Cardiomyocytes 
To confirm apoptosis and the expression of 

RACK1, cardiomyocytes were cultured. Heart tissue 
was digested with Hanks balanced salt solution 



Int. J. Med. Sci. 2018, Vol. 15 

 
http://www.medsci.org 

354 

(HBSS; Gibco, USA) and incubated in a conical tube 
with an enzyme solution in a 37°C water bath for 30 
minutes. The enzyme solution consisted of 0.1% 
collagenase type 2 (Sigma-Aldrich, USA) and 0.5% 
trypsin (Gibco, USA) in HBSS. After incubation, the 
supernatant was collected. The cells from the 
supernatant were harvested using a centrifuge at 700 
g for 10 minutes and suspended in Dulbecco’s 
modified Eagle’s medium F-12-1 (DMEM F-12-1, Gibco, 
USA) containing 5% foetal bovine serum (FBS; 
Thermo Fisher Scientific, USA), heat-inactivated horse 
serum (HS; Vector, USA), and 1% 
penicillin-streptomycin (Gibco, USA). After 
centrifugation, the pellet was plated on a 100 mm dish 
and incubated for 1 hour at 37°C in a carbon dioxide 
incubator. After incubation, the supernatant in the 
dish was harvested and seeded on another dish with 
DMEM F-12-1. After cardiomyocytes were obtained 
via cell culture, as described above, cardiomyocyte 
apoptosis was evaluated using flow cytometry. The 
cultured cardiomyocytes were stained with 
tetramethylrhodamine, methyl ester, perchlorate 
(TMRM; Thermo Fisher scientific, USA), and 
annexin-V (BioLegend, USA). The staining was 
performed for 30 minutes in the dark at room 
temperature and the sample was analysed using flow 
cytometry. The data were analysed with FlowJo 
software. 

Expression of RACK1 
To confirm the expression of RACK1, 

immunohistochemistry and Western blotting were 
performed. 

Immunohistochemical staining for RACK1 
(Abcam, USA) and toll-like receptor 4 (TLR4, Abcam, 
USA) was performed using 4-μm tissue slices, which 
were deparaffinised and prepared for epitope 
retrieval using citrate buffer at pH 6. The slices were 
incubated in blocking solution for 1 hour. After 
incubation, they were reacted with primary antibody 
against mouse-RACK1 (Abcam, USA) overnight at 
4°C. Then, they were incubated for 1 hour with 
diluted biotinylated secondary antibody. After 
reacting with the secondary antibody, avidin-biotin 
complex reagent (Vector, USA) was applied for 1 hour 
at room temperature and followed by 
3,30-diaminobenzidine reagent (Vector, USA). The 
slices were stained with haematoxylin as a counter 
stain, rehydrated, and cover-slipped using mounting 
medium (Vector, USA). 

For immunohistochemical staining for TLR4, 
antibody against TLR4 rabbit polyclonal antibody 
(Abcam, USA) diluted 1:100 was used as the primary 
antibody. Photographs were taken using a microscope 
(Nikon, Japan). The RACK1 and TLR4 intensities were 

quantified using NIH Image J software. 
 For Western blotting, the cultured 

cardiomyocytes were homogenised in lysis buffer 
(150 mM NaCl, 1.0% nonyl 
phenoxypolyethoxylethanol-40, and 50 mM Tris HCl; 
ElpisBio, Korea) containing protease inhibitor 
(Sigma-Aldrich, USA) and clarified by centrifugation 
at 13,000 rpm for 15 minutes at 4°C to collect the 
supernatant. The proteins in the supernatant were 
resolved by 7.5% sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE, Bio-Rad) and separated. They were 
transferred to a polyvinylidene difluoride membrane 
(PVDF; Millipore, USA) using transfer apparatus for 2 
hours at 300 mA. The membrane was blocked with 5% 
BSA for 2 hours at room temperature and incubated 
with primary antibodies against mouse-RACK1 
(Santa Cruz Biotechnology, USA at 4°C overnight. 
The membranes were incubated with horseradish 
peroxidase-conjugated secondary antibodies (Abcam, 
USA). The protein was detected using an LAS-3000 
imaging system (Fujifilm, Japan). For re-probing, the 
blots were stripped with western Blot Stripping Buffer 
(Thermo Scientific, USA). The blot was then 
re-blocked and re-probed with rabbit-cleaved 
caspase-3 (Santa Cruz Biotechnology, USA), 
mouse-Bcl-2 (Santa Cruz Biotechnology, USA) and 
rabbit-glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH, Sigma-Aldrich, USA) antibody detected 
with ECL substrate and LAS-3000 imaging system 
(Fujifilm, Japan). 

Histological analysis of heart 
Heart tissue was fixed overnight at room 

temperature in 4% paraformaldehyde solution (PFA; 
BIOSESANG, Korea). After washing the heart tissue, 
it was embedded in paraffin blocks. The tissues were 
cut in 4 μm slices using a microtome and stained with 
haematoxylin (Vector Laboratories, USA) and eosin 
(Sigma-Aldrich, USA). The sliced tissues were 
examined by light microscopy. The heart injury score 
was determined in sections containing the right and 
left ventricles using a semi-quantitative scale from 0 to 
4, as follows: 0 = no injury, 1 = isolated myocyte 
injury, 2 = one focal area of injury, 3 = two or more 
areas of injury, and 4 = diffuse areas of damage 
compromising more than 50% of the myocardium. 

Statistics 
The differences between groups were analysed 

using an unpaired t-test using GraphPad Prism 5.01 
(GraphPad Software, USA). Statistical significance 
was set to less than 0.05. The sample size was 
calculated with the “resource equation method”. A 
sample size of 10 animals per group was calculated, as 
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needed, to show a significant difference. The data are 
presented as the means ± SD. 

Results 
Twenty rats were used for the experiments and 

allocated evenly into the two groups. The expression 
of ROS in blood from the propofol group was 
significantly lower than in the isoflurane group (54.32 

± 5.31% vs. 81.81 ± 2.34%, p<0.05) (Figure 1). 
 Cardiomyocyte apoptosis was significantly 

lower in the propofol group (7.50 ± 0.89% vs. 15.24 ± 
2.03%, p<0.05) (Figure 2). Annexin-V was also lower 
in the propofol group (blood, 6.75 ± 1.20% vs. 17.51 ± 
2.45%, p<0.05; heart, 2.16 ± 0.41% vs. 16.88 ± 4.52%, 
p<0.05) (Figure 2). 

 

 
Figure 1. Expression of intracellular reactive oxygen species (ROS) in PBMC. * p < 0.05 compared with Isoflurane group. 

 

 
Figure 2. Cardiomyocyte apoptosis determined by annexin-V staining. * p < 0.05 compared with Isoflurane group. 

 
Figure 3. Immunohistochemistric findings for Receptor for activated C kinase 1 (RACK1) and toll-like receptor 4 (TLR4) in cardiomyocyte. * p < 0.05 compared with 
Isoflurane group. 
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Figure 4. Western blot for Receptor for activated C kinase 1 (RACK1) ratio in cardiomyocyte. * p < 0.05 compared with Isoflurane group. 

 

 
Figure 5. Histologic analysis of heart with heart injury score. 

 
In the propofol group, the RACK1 expression 

was significantly higher and the TLR4 expression was 
lower, compared with the isoflurane group (RACK1, 
1970.50 ± 120.50 vs. 1350.20 ± 250.30, p<0.05; TLR4, 
980.50 ± 110.75 vs. 1275.50 ± 75.35, p<0.05) (Figure 3). 
Western blotting showed a similar pattern for the 
ratio of RACK1, Bcl-2, and cleaved caspase 3 
(propofol vs. isoflurane, respectively: RACK1, 152.50 ± 
6.29 vs. 103.01 ± 3.43, p<0.05; Bcl-2, 93.65 ± 8.76 vs. 
53.63 ± 6.29, p<0.05; cleaved caspase 3, 12.71 ± 3.68 vs. 
30.60 ± 21.18, p<0.05) (Figure 4). 

In the histopathological analysis, the two groups 
had similar heart injury scores (4.00 ± 0.23 vs. 4.33 ± 
0.24, p=0.33, propofol vs. isoflurane, respectively) 
(Figure 5). 

Discussion 
 The propofol group showed significantly lower 

expression of ROS after myocardial IRI with 
significantly less cardiomyocyte apoptosis with lower 
annexin-V levels compared with the isoflurane group. 
The propofol group also had higher RACK1 
expression and lower TLR4 expression. However, the 
heart injury scores in the two groups were similar. 

The massive burst of ROS released during 
myocardial IRI results in cardiac injury and 
contractile dysfunction with increased infarct size [16, 
17]. By contrast, the small releases of ROS before an 
ischemic event may have a beneficial effect on the 

heart at myocardial IRI [18]. In terms of ROS, propofol 
protects the heart against myocardial IRI via its ROS 
scavenging activity. It enhances the endogenous 
cardiac anti-oxidant capacity and ultimately 
attenuates IRI [19]. In comparison, inhalation 
anaesthetic agents provide protection against 
myocardial IRI by stimulating the release of small 
amounts of ROS, which triggers and enhances the 
production of endogenous anti-oxidant enzymes and 
activates mitochondrial KATP channels, limiting 
myocardial infarction [20]. The significant lower 
expression of ROS in the propofol group in our study 
was reasonable. 

 The death of cardiomyocytes after myocardial 
IRI results from necrosis and apoptosis. ROS are 
involved in the cardiomyocyte apoptosis pathway 
[21]. Propofol has a similar chemical structure to the 
active nucleus of α-tocopherol, which has anti-oxidant 
effects. Jin et al. confirmed the dose-dependent 
protective effect of propofol in myocardial IRI, 
reducing cardiomyocyte apoptosis, compared with a 
control group [22]. Wu et al. demonstrated that 
isoflurane had a protective effect on cardiomyocytes 
exposed during myocardial IRI by reducing excess 
ROS production in culture with cardiomyocytes, 
compared with a control group [23]. The protective 
effect of isoflurane on cardiomyocytes during 
myocardial IRI is related to reducing 
pro-inflammatory cytokine production, eliminating 
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oxidative stress, improving superoxide dismutase 
activity, and inhibiting cardiomyocyte apoptosis [24, 
25]. In this study, the lower cardiomyocyte apoptosis 
in the propofol group was associated with the lower 
expression of ROS, compared with the isoflurane 
group. 

 Several studies have demonstrated that TLR4 
has a role in myocardial IRI [26]. TLR4 activation 
increases ROS production in various forms of IRI [27]. 
Oyama et al. revealed that TLR4-deficient mice had 
smaller infarcts with less inflammation after 
myocardial IRI [28]. Therefore, the TLR4 pathway was 
the therapeutic target, achieving a reduction in ROS 
production, to protect against IRI [29-31]. Considering 
the association between TLR4 and ROS, RACK1 
should control the TLR4 pathway and ROS 
production in myocardial IRI. Jia et al. showed that 
RACK1 protected against IRI by attenuating ROS 
production in H9C2 cells, a rat cardiac myoblast cell 
line [32]. Therefore, the higher expression of RACK1 
might inhibit the TLR4 pathway and reduce ROS 
production in myocardial IRI. In our study, the higher 
RACK1 expression in the propofol group was 
associated with the significantly lower expression of 
ROS and cardiomyocyte apoptosis with the 
significantly lower TLR4 expression. 

Nevertheless, our result for isoflurane should be 
considered. First, the cardioprotective effect of 
isoflurane on myocardial IRI is initiated by the small 
amount of ROS released, not resulting in injury. 
Therefore, cardiomyocyte apoptosis would differ 
significantly between the two groups. Second, we 
could not assess the cardioprotective effect of 
isoflurane in myocardial IRI without a control group. 
Our results were a simple comparison between two 
groups. If rats without any anaesthetic agent were 
included, the results would be more concrete. 
However, ethical principles have to be considered. 
Third, the superiority of the cardioprotective effects of 
propofol and isoflurane could differ with the 
concentrations of anaesthetic agents, duration of the 
ischemic event, and other factors [33, 34]. 

Interestingly, the similar histological findings in 
the heart were remarkable. This meant that the 
significant differences in inflammation and apoptosis 
between the two groups were not sufficient to have a 
different effect on the injury. It also means that the 
myocardial function would be similar after 
myocardial IRI, although it was not evaluated in this 
study. 

In conclusion, there were significant differences 
in inflammation and apoptosis, including the 
expression of RACK1 and TLR4, after myocardial IRI 
between the propofol and isoflurane groups. 
However, both groups had similar heart injury scores. 

These findings indicate that propofol and isoflurane 
have similar effects on myocardial IRI, despite the 
different mechanisms involved. 
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