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Abstract 

Breast cancer is a major cause of cancer mortality amongst women. Chemokine (C-C motif) ligand 4 is encoded 
by the CCL4 gene; specific CCL4 gene polymorphisms are related to the risks and prognoses of various diseases. 
In this study, we examined whether CCL4 gene single nucleotide polymorphisms (SNPs) predict the risk and 
progression of breast cancer. Between 2014 and 2016, we recruited 314 patients diagnosed with breast cancer 
and a cohort of 209 healthy participants (controls) without a history of cancer. Genotyping of the CCL4 
rs1634507, rs10491121 and rs1719153 SNPs revealed no significant between-group differences for these 
polymorphisms. However, amongst luminal A and luminal B subtypes, compared with patients with the AA 
genotype, those carrying the AG genotype at SNP rs10491121 were less likely to develop lymph node 
metastasis. In addition, compared with AA carriers, those carrying the AG + GG genotype at SNP rs10491121 
were at lower risk of developing distant metastasis, while the presence of the AT genotype at SNP rs1719153 
increased the likelihood of pathologic grade (G3 or G4) disease. Variations in the CCL4 gene may help to predict 
breast cancer progression and metastasis. 
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Introduction 
Breast cancer is the second leading cause of 

cancer deaths amongst women worldwide. Nearly 
million women worldwide are diagnosed with breast 
cancer annually and more than 500,000 die from this 
disease [1]. Besides age, reproductive and gynecologic 
factors, other risk factors such as family history and 
environmental factors including tobacco and alcohol 
consumption, as well as overall amount of physical 
activity, can greatly modify the risk of developing 
breast cancer [2]. In addition, gynecologic diseases 
including polycystic ovarian syndrome and 

adenomyosis have been found to enhance the risk of 
breast cancer [3, 4]. 

Mammography screening and genetic testing 
have limited sensitivity and specificity for estimating 
breast cancer risk [2]. It is uncertain as to whether 
single nucleotide polymorphism (SNP) genotyping 
could more accurately predict breast cancer risk and 
guide disease management [5, 6]. Susceptibility to 
breast cancer appears to be influenced by certain 
SNPs, as well as clinicopathologic status [7]. BRCA1 
and BRCA2 gene mutations increase the risk of breast 
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cancer [8, 9]. Fascin-1 (FSCN1) and high-mobility 
group box protein 1 (HMGB1) genetic polymorphisms 
have also been identified as predictive biomarkers for 
breast cancer [10]. 

Chemokine (C-C motif) ligand 4 (CCL4) is a 
protein that is encoded by the CCL4 gene and acts as a 
chemoattractant for natural killer cells, monocytes 
and various other immune cells in the site of inflamed 
or damaged tissue. CCL4 polymorphisms influence 
gene expression, protein function and susceptibility to 
various diseases, including hepatocellular carcinoma, 
oral cancer, and psoriasis [11-14]. CCL4 belongs to a 
cluster of genes located in the chromosomal region 
17q11-q21. The CCL4 protein acts as the chemokine 
being secreted under mitogenic signals and antigens 
and attracting monocytes, dendritic cells, natural 
killer cells and other effector cells into the site of 
inflamed or damaged tissue [15, 16]. On the other 
hand, the CCL4 gene polymorphisms has been 
associated with risk and development in oral cancer 
and hepatocellular carcinoma [12, 17]. Despite the 
well-known impact of chemokines on cancer 
progression and the recognition that CCL4 gene SNPs 
play important roles in a variety of human diseases, 
little is known about the association between these 
SNPs and the susceptibility to breast cancer and its 
progression. In this study, we evaluated the 
predictive capacity of three CCL4 SNPs as candidate 
biomarkers for breast cancer risk. 

Materials and Methods 
Participants 

Between 2014 and 2016, we collected 314 blood 
specimens from patients (cases) diagnosed with breast 
cancer at Dongyang People's Hospital. A total of 209 
healthy, cancer-free individuals served as controls. 
Written informed consent was obtained from all 
participants before study entry. The Ethics Committee 
of Dongyang People's Hospital granted study 
approval. Pathohistologic diagnosis used the World 
Health Organization breast tumor classification and 
tumors were graded using the Scarff-Bloom- 
Richardson method [18]. Breast cancer cases were 
categorized by estrogen receptor (ER), progesterone 
receptor (PR), human epidermal growth factor 
receptor 2 (HER2) and Ki-67 status and grouped 
under 1 of 4 subtypes: Luminal A (ER-positive [+] 
and/or PR+, HER2-negative [–], Ki-67 <14%); Luminal 
B (ER+ and/or PR+, HER2–, Ki-67 ≥14%; or ER+ and/or 
PR+, HER2+); HER2-enriched (ER–, PR–, HER2+); or as 
triple-negative breast cancer (TNBC; ER–, PR–, HER2–) 
[19-21]. A standardized questionnaire at study entry 
collected sociodemographic data and electronic medi-
cal records provided clinicopathologic information. 

Selection of CCL4 polymorphisms 
The CCL4 SNPs selected for this study were 

identified from multi-allelic copy number variation 
(CNV) profiles encompassing the q12 region of 
chromosome 17 containing CCL4 genes. 
Nonsynonymous SNPs rs1634507, rs10491121 and 
rs1719153 were extracted from a search of the 
National Center for Biotechnology Information 
(NCBI) dbSNP database. 

Genomic DNA extraction 
The QIAamp DNA Blood Mini Kit (Qiagen, Inc., 

Valencia, CA, USA) purified genomic DNA from 
peripheral blood leukocytes. The DNA was dissolved 
in TE buffer (10 mM Tris, 1 mM EDTA; pH 7.8), 
quantified by OD260, then stored at –20℃ for further 
analysis. 

Real-time PCR 
The ABI StepOne™ real-time polymerase chain 

reaction (PCR) system (Applied Biosystems, Foster 
City, CA, USA) assessed sequencing of allelic 
discrimination for the CCL4 SNP. The TaqMan assay 
used Software Design Specification version 3.0 
software (Applied Biosystems) to analyze the 
discrimination data. Primers and probes consisted of 
rs1634507 “AGTTTTCTTGACCTCATGAATGCTG- 
[G/T]TGAGGCTTTATCCCTCTCTCAGGAA” (pro-
duct ID: C_7451708_10), rs10491121 “CCTATCCCCT 
TCCTGAATTAAGTCC-[A/G]AATATAGTCAGTCT
TTGAGTGTGGA” (product ID: C_11626804_10) and 
rs1719153 “TAGGGACTGTTGCACCGAGTTTCAC- 
[A/T]GTTAAGGAAACAGAGGCACAGAGAG” 
(product ID: C_12120537_10). PCRs were performed 
in a total volume of 10 μL containing Master Mix (5 
μL), probes (0.25 μL) and genomic DNA (10 ng). The 
real-time PCR reaction included an initial 
denaturation step at 95°C for 10 min, then 40 
amplification cycles of 95°C for 15 secs and 60°C for 1 
min [19, 22]. 

Statistical analysis 
Between-group differences were considered 

significant if p-values were less than 0.05. Chi-square 
analysis tested for Hardy-Weinberg equilibrium in 
the SNP genotype distributions. The Mann-Whitney 
U-test and Fisher's exact test were utilized for 
between-group demographic comparisons. Multiple 
logistic regression models adjusted for confounding 
variables estimated adjusted odds ratios (AORs) and 
95% confidence intervals (CIs) for associations 
between genotype frequencies and the risk of breast 
cancer or clinicopathologic characteristics. Haplotype 
frequencies were analyzed using Haploview [23]. All 
data were analyzed with the software program 
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Statistical Analytic System version 9.1 and are 
reported as the sample mean ± the standard deviation 
(SD). 

Results 
All study participants were Chinese Han (Table 

1). The majority were nonsmokers and did not 
consume alcohol. There was a significantly higher 
proportion of younger age participants in the control 
group compared with the breast cancer cohort 
(p<0.05). Most patients (77.1%) had stage I/II breast 
cancer; 22.9% had stage III/IV disease (Table 1). In an 
analysis of hormone receptor status, tumors were 
mostly ER– (69.7%), PR– (54.1%), or HER2+ (63.1%) 
(Table 1). 

 

Table 1. Demographic and clinicopathologic characteristics 
among healthy cancer-free controls and patients with breast 
cancer. 

Variable Controls 
N=209 (%) 

Patients  
N=314 (%) 

p value 

Age (years) Mean ± SD Mean ± SD  
 38.5±16.7 53.1±11.4 *p<0.05 
Tobacco smokers 
No 202 (96.7) 313 (99.7)  
Yes 7 (3.3) 1 (0.3) *p<0.05 
Alcohol consumption 
No 203 (97.1) 295 (93.9)  
Yes 6 (2.9) 19 (6.1) p>0.05 
Clinical stage 
I/II  242 (77.1)  
III/IV  72 (22.9)  
Tumor size 
≤T2  298 (94.9)  
>T2  16 (5.1)  
Lymph node status 
N0+N1  247 (78.7)  
N2+N3  67 (21.3)  
Distant metastasis 
M0  304 (96.8)  
M1  10 (3.2)  
Histological grade 
G1+G2  218 (69.4)  
G3+G4  96 (30.6)  
ER status 
Positive  95 (30.3)  
Negative  219 (69.7)  
PR status 
Positive  144 (45.9)  
Negative  170 (54.1)  
HER2 status 
Positive  198 (63.1)  
Negative  116 (36.9)  
The Mann-Whitney U-test and Fisher’s exact test were used to compare values 
between controls and patients with breast cancer. *p < 0.05 was statistically 
significant. T2 = tumor >20 mm but ≤50 mm in greatest dimension; N0 = lymph 
node-negative; N1 = cancer has spread to 1–3 lymph node(s); N2 = 4–9 lymph 
nodes; N3 = ≥10 positive lymph nodes; M0 = noninvasive cancer; M1 = cancer has 
metastasized to organs or lymph nodes away from the breast; G1 = well 
differentiated (low grade); G2 = moderately differentiated (intermediate grade); G3 
= poorly differentiated (high grade); G4 = undifferentiated (high grade); ER = 
estrogen receptor; PR = progesterone receptor; HER2 = human epidermal growth 
factor receptor 2. 

 
Polymorphism frequencies are shown in Table 2. 

All genotypes were in Hardy-Weinberg equilibrium 

(p > 0.05). In both study groups, the most frequent 
genotypes for SNPs rs10491121, rs1634507 and 
rs1719153 were homozygous for A/A, homozygous 
for G/G and homozygous for A/A. Analyses that 
adjusted for potential confounders found no 
significant between-group differences for the 
polymorphism frequencies. 

 

Table 2. Distribution frequencies of CCL4 genotypes among 
healthy cancer-free controls and patients with breast cancer. 

Variable Controls 
N=209 (%) 

Patients 
N=314 (%) 

OR (95% CI) 

rs10491121 
AA 64 (41) 79 (34.2) 1.00 (reference) 
AG 92 (59) 152 (65.8) 1.338 (0.88-2.035) 
GG 53 (45.3) 83 (51.2) 1.269 (0.787-2.044) 
AG+GG 145 (69.4) 235 (74.8) 1.313 (0.89-1.938) 
rs1634507 
GG 101 (54.9) 135 (49.5) 1.00 (reference) 
GT 83 (45.1) 138 (50.5) 1.244 (0.855-1.810) 
TT 25 (19.8) 41 (23.3) 1.227 (0.701-2.148) 
GT+TT 108 (51.7) 179 (57) 1.240 (0.873-1.762) 
rs1719153 
AA 101 (55.5) 149 (52.7) 1.00 (reference) 
AT 81 (44.5) 134 (47.3) 1.121 (0.771-1.630) 
TT 27 (21.1) 31 (17.2) 0.778 (0.438-1.382) 
AT+TT 108 (51.7) 165 (52.5) 1.036 (0.73-1.470) 
The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by 
logistic regression analysis. The adjusted ORs (AORs) with their 95% CIs were 
estimated by multiple logistic regression analysis that controlled for tobacco 
smoking, alcohol consumption and age. 

 
A comparison of clinicopathologic characteristics 

and CCL4 genotypes revealed no significant 
differences (Table 3). Similarly, an analysis of CCL4 
genotypic frequencies amongst breast cancer subtypes 
failed to identify any significant differences between 
patients and controls (Table 4). However, among 
luminal A and luminal B subtypes, patients carrying 
the AG genotype at SNP rs10491121 were less likely to 
develop lymph node metastasis compared with AA 
genotype carriers (AOR, 0.298; 95% CI: 0.1-0.885) 
(Table 5). In addition, patients with the rs10491121 
AG + GG genotype were at lower risk of developing 
distant metastasis compared with AA genotype 
carriers (AOR, 0.106; 95% CI: 0.011-1.038). Moreover, 
the presence of the TT haplotype at the SNP rs1719153 
(AOR 3.316; 95% CI: 1.12-9.815) increased the 
likelihood of developing pathologic grade (G3+G4) 
disease (Table 5). 

Figure 1 represents the reconstructed linkage 
disequilibrium plot of the genotyped polymorphisms 
in our study population. In one haploblock, rs1634507 
and rs10491121 displayed 98% linkage 
disequilibrium. CCL4 SNPs rs1634507 and rs1719153 
expressed 95% linkage disequilibrium; rs10491121 
and rs1719153 expressed 97% linkage disequilibrium 
(Fig. 1). 
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Table 3. Odds ratios and their confidence intervals for clinical status and CCL4 genotypic frequencies in patients with breast cancer. 

Genotype Patients 
N=314 (%) 

OR (95% CI) 

Clinical stage 
 Stage I/II Stage III/IV  

rs10491121 
AA 55 (25) 24 (25.5) 1.00 (reference) 
AG+GG 165 (75) 70 (74.5) 0.972 (0.558-1.694) 
rs1634507 
GG 98 (44.5) 37 (39.4) 1.00 (reference) 
GT+TT 122 (55.5) 57 (60.6) 1.237 (0.757-2.024) 
rs1719153 
AA 109 (49.5) 40 (42.6) 1.00 (reference) 
AT+TT 111 (50.5) 54 (57.4) 1.326 (0.815-2.157) 

Tumor size 
 ≤T2 >T2  

rs10491121 
AA 76 (25.5) 3 (18.8) 1.00 (reference) 
AG+GG 222 (74.5) 13 (81.2) 1.483 (0.412-5.347) 
rs1634507 
GG 130 (43.6) 5 (31.2) 1.00 (reference) 
GT+TT 168 (56.4) 11 (68.8) 1.702 (0.577-5.021) 
rs1719153 
AA 144 (48.3) 5 (31.2) 1.00 (reference) 
AT+TT 154 (51.7) 11 (68.8) 2.057 (0.698-6.065) 

Lymph node status 
 N0+N1 N2+N3  

rs10491121 
AA 68 (86.1) 11 (13.9) 1.00 (reference) 
AG+GG 215 (91.5) 20 (8.5) 0.575 (0.262-1.260) 
rs1634507 
GG 121 (89.6) 14 (10.4) 1.00 (reference) 
GT+TT 162 (90.5) 17 (9.5) 0.907 (0.403-1.911) 
rs1719153 
AA 136 (91.3) 13 (8.7) 1.00 (reference) 
AT+TT 147 (89.1) 18 (10.9) 1.281 (0.605-2.713) 

Distant metastasis 
 M0 M1  

rs10491121 
AA 74 (93.7) 5 (6.3) 1.00 (reference) 
AG+GG 230 (97.9) 5 (2.1) 0.322 (0.91-1.142) 
rs1634507 
GG 130 (96.3) 5 (3.7) 1.00 (reference) 
GT+TT 174 (97.2) 5 (2.8) 0.747 (0.212-2.635) 
rs1719153 
AA 144 (96.6) 5 (3.4) 1.00 (reference) 
AT+TT 160 (97) 5 (3) 0.9 (0.255-3.172) 

Histologic grade 
 G1+G2 G3+G4  

rs10491121 
AA 58 (73.4) 21 (26.6) 1.00 (reference) 
AG+GG 160 (68.1) 75 (31.9) 1.295 (0.732-2.288) 
rs1634507 
GG 99 (73.3) 36 (26.7) 1.00 (reference) 
GT+TT 119 (66.5) 60 (33.5) 1.387 (0.848-2.267) 
rs1719153 
AA 109 (73.2) 40 (26.8) 1.00 (reference) 
AT+TT 109 (66.1) 56 (33.9) 1.4 (0.862-2.274) 
The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by logistic regression analysis. The adjusted odds ratios (AORs) with their 95% CIs were 
estimated by multiple logistic regression analysis that controlled for smoking, consumption and age. 
T2 = tumor >20 mm but ≤50 mm in greatest dimension; N0 = lymph node-negative; N1 = cancer has spread to 1–3 lymph node(s); N2 = 4–9 lymph nodes; N3 = ≥10 positive 
lymph nodes; M0 = noninvasive cancer; M1 = cancer has metastasized to organs or lymph nodes away from the breast; G1 = well differentiated (low grade); G2 = moderately 
differentiated (intermediate grade); G3 = poorly differentiated (high grade); G4 = undifferentiated (high grade). 
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Table 4. Distribution frequencies of CCL4 genotypes in breast cancer subtypes. 

Variable Control N= 209(%) Patients N= 220(%) 
Lumina A + Lumina B 

OR (95% CI) Variable Control N= 209(%) Patients N= 94(%) 
HER2 overexpression + TNBC 

OR (95% CI) 

rs10491121 rs10491121 
AA 64 (53.8) 55 (46.2) 1.00 (reference) AA 64 (76.2) 20 (23.8) 1.00 (reference) 
AG 92 (45.8) 109 (54.2) 1.379 (0.875-2.173) AG 92 (74.2) 32 (25.8) 1.113 (0.585-2.118) 
GG 53 (48.6) 56 (51.4) 1.23 (0.731-2.069) GG 53 (72.6) 20 (27.4) 1.208 (0.588-2.478) 
AG+GG 145 (46.8) 165 (53.2) 1.324 (0.867-2.023) AG+GG 145 (73.6) 52 (26.4) 1.148 (0.634-2.078) 
rs1634507 rs1634507 
GG 101 (50.8) 98 (49.2) 1.00 (reference) GG 101 (77.7) 29 (22.3) 1.00 (reference) 
GT 83 (46.6) 95 (53.4) 1.18 (0.787-1.768) GT 83 (69.7) 36 (30.3) 1.511 (0.855-2.668) 
TT 25 (48.1) 27 (49.8) 1.113 (0.604-2.050) TT 25 (78.1) 7 (21.9) 0.975 (0.383-2.482) 
GT+TT 108 (47) 122 (53) 1.164 (0.796-1.702) GT+TT 108 (74.4) 72 (25.6) 1.387 (0.805-2.388) 
rs1719153 rs1719153 
AA 101 (48.1) 109 (51.9) 1.00 (reference) AA 101 (75.9) 32 (24.1) 1.00 (reference) 
AT 81 (46.3) 94 (53.7) 1.075 (0.719-1.607) AT 81 (69.8) 35 (30.2) 1.364 (0.778-2.391) 
TT 27 (61.4) 17 (38.6) 0.583 (0.3-1.134) TT 27 (84.4) 5 (15.6) 0.584 (0.208-1.643) 
AT+TT 108 (49.3) 111 (50.7) 0.952 (0.652-1.391) AT+TT 108 (73) 40 (27) 1.169 (0.682-2.002) 
The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by logistic regression analysis. The adjusted odds ratios (AORs) with their 95% CIs were 
estimated by multiple logistic regression analysis that controlled for smoking, consumption and age.  
HER2 = human epidermal growth factor receptor 2; TNBC = triple-negative breast cancer. 

 

Table 5. Odds ratios and their confidence intervals for clinical status and CCL4 genotypic frequencies in breast cancer subtypes. 

Variable  Luminal A + Luminal B  
N=220 (%) 

HER2 overexpression + TNBC  
N=94 (%) 

  Clinical Stage Clinical Stage 
  Stage I/II Stage III/IV OR (95% CI) Stage I/II Stage III/IV OR (95% CI) 
 rs10491121 
AA  40 (72.7) 15 (27.3) 1.00 (reference) 19 (79.2) 5 (20.8) 1.00 (reference) 
AG  93 (85.3) 16 (14.7) 0.459 (0.207-1.017) 27 (62.8) 16 (37.2) 2.252 (0.704-7.206) 
GG  40 (71.4) 16 (28.6) 1.067 (0.465-2.445) 23 (85.2) 4 (14.8) 0.661 (0.155-2.813) 
AG+GG  133 (80.6) 32 (19.4) 0.642 (0.316-1.302) 50 (71.4) 20 (28.6) 1.52 (0.499-4.627) 
 rs1634507 
GG  77 (78.6) 21 (21.4) 1.00 (reference) 29 (78.4) 8 (21.6) 1.00 (reference) 
GT  74 (77.9) 21 (22.1) 1.041 (0.525-2.062) 28 (65.1) 15 (34.9) 1.942 (0.712-5.294) 
TT  22 (81.5) 5 (18.5) 0.833 (0.282-2.464) 12 (85.7) 2 (14.3) 0.604 (0.112-3.272) 
GT+TT  96 (78.7) 26 (21.3) 0.993 (0.519-1.899) 40 (70.2) 17 (29.8) 1.541 (0.586-4.051) 
 rs1719153 
AA  85 (78) 24 (22) 1.00 (reference) 32 (80) 8 (20) 1.00 (reference) 
AT  74 (78.7) 20 (21.3) 0.957 (0.49-1.871) 25 (62.5) 15 (37.5) 2.4 (0.879-6.556) 
TT  14 (82.4) 3 (17.6) 0.759 (0.201-2.86) 12 (85.7) 2 (14.3) 0.667 (0.124-3.597) 
AT+TT  88 (79.3) 23 (20.7) 0.926 (0.486-1.764) 37 (68.5) 17 (31.5) 1.838 (0.701-4.821) 
  Tumor size Tumor size 
  ≤T2 >T2 OR (95% CI) ≤T2 >T2 OR (95% CI) 
 rs10491121 
AA  53 (96.4) 2 (3.6) 1.00 (reference) 23 (95.8) 1 (4.2) 1.00 (reference) 
AG  106 (97.2) 3 (2.8) 0.75 (0.122-4.626) 38 (88.4) 5 (11.6) 3.026 (0.332-27.548) 
GG  54 (96.4) 2 (3.6) 0.981 (0.133-7.225) 24 (88.9) 3 (11.1) 2.875 (0.279-29.677) 
AG+GG  160 (97) 5 (3) 0.828 (0.156-4.395) 62 (88.6) 8 (11.4) 2.968 (0.352-25.054) 
 rs1634507 
GG  95 (96.9) 3 (3.1) 1.00 (reference) 35 (94.6) 2 (5.4) 1.00 (reference) 
GT  92 (96.8) 3 (3.2) 1.033 (0.203-5.248) 37 (86) 6 (14) 2.838 (0.537-15.01) 
TT  26 (96.3) 1 (3.7) 1.218 (0.122-12.201) 13 (92.9) 1 (7.1) 1.346 (0.112-16.13) 
GT+TT  118 (96.7) 4 (3.3) 1.073 (0.235-4.914) 50 (87.7) 7 (12.3) 2.45 (0.48-12.501) 
 rs1719153 
AA  106 (97.2) 3 (2.8) 1.00 (reference) 38 (95) 2 (5) 1.00 (reference) 
AT  91 (96.8) 3 (3.2) 1.165 (0.229-5.913) 34 (85) 6 (15) 3.353 (0.634-17.738) 
TT  16 (94.1) 1 (5.9) 2.208 (0.216-22.548) 13 (92.9) 1 (7.1) 1.462 (0.122-17.482) 
AT+TT  107 (96.4) 4 (3.6) 1.321 (0.289-6.044) 47 (87) 7 (13) 2.83 (0.555-14.423) 
  Lymph node status Lymph node status 
  N0+N1 N2+N3 OR (95% CI) N0+N1 N2+N3 OR (95% CI) 
 rs10491121 
AA  46 (83.6) 9 (16.4) 1.00 (reference) 22 (91.7) 2 (8.3) 1.00 (reference) 
AG  103 (94.5) 6 (5.5) 0.298 (0.1-0.885)* 37 (86) 6 (14) 1.784 (0.331-9.619) 
GG  48 (85.7) 8 (14.3) 0.852 (0.303-2.397) 27 (100) 0 (0) 0.917 (0.813-1.034) 
AG+GG  151 (91.5) 14 (8.5) 0.474 (0.193-1.166) 64 (91.4) 6 (8.6) 1.031 (0.194-5.489) 
 rs1634507 
GG  87 (88.8) 11 (11.2) 1.00 (reference) 34 (91.9) 3 (8.1) 1.00 (reference) 
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Variable  Luminal A + Luminal B  
N=220 (%) 

HER2 overexpression + TNBC  
N=94 (%) 

GT  87 (91.6) 8 (8.4) 0.727 (0.279-1.896) 38 (88.4) 5 (11.6) 1.491 (0.331-6.712) 
TT  23 (85.2) 4 (14.8) 1.375 (0.401-4.721) 14 (100) 0 (0) 0.919 (0.835-1.011) 
GT+TT  110 (90.2) 23 (10.5) 0.863 (0.363-2.049) 52 (91.2) 5 (8.8) 1.09 (0.244-4.861) 
 rs1719153 
AA  99 (90.8) 10 (9.2) 1.00 (reference) 37 (92.5) 3 (7.5) 1.00 (reference) 
AT  84 (89.4) 10 (10.6) 1.179 (0.468-2.968) 35 (87.5) 5 (12.5) 1.762 (0.392-7.929) 
TT  14 (82.4) 3 (17.6) 2.121 (0.52-8.658) 14 (100) 0 (0) 0.925 (0.847-1.01) 
AT+TT  98 (88.3) 13 (11.7) 1.313 (0.55-3.136) 49 (90.7) 5 (9.3) 1.259 (0.283-5.605) 
  Distant metastasis Distant metastasis 
  M0 M1 OR (95% CI) M0 M1 OR (95% CI) 
 rs10491121 
AA  52 (94.5) 3 (5.5) 1.00 (reference) 22 (91.7) 2 (8.3) 1.00 (reference) 
AG  109 (100) 0 (0) 0.945 (0.887-1.007)* 40 (93) 3 (7) 0.825 (0.128-5.317) 
GG  55 (98.2) 1 (1.8) 0.315 (0.032-3.127) 26 (96.3) 1 (3.7) 0.423 (0.036-4.985) 
AG+GG  164 (99.4) 1 (0.6) 0.106 (0.011-1.038)* 66 (94.3) 4 (5.7) 0.667 (0.114-3.893) 
 rs1634507 
GG  95 (96.9) 3 (3.1) 1.00 (reference) 35 (94.6) 2 (5.4) 1.00 (reference) 
GT  95 (100) 0 (0) 0.969 (0.936-1.004) 39 (90.7) 4 (9.3) 1.795 (0.31-10.408) 
TT  26 (96.3) 1 (3.7) 1.218 (0.122-12.201) 14 (100) 0 (0) 0.946 (0.876-1.022) 
GT+TT  121 (99.2) 1 (0.8) 0.262 (0.027-2.556) 53 (93) 4 (7) 1.321 (0.229-7.602) 
 rs1719153 
AA  106 (97.2) 3 (2.8) 1.00 (reference) 38 (95) 2 (5) 1.00 (reference) 
AT  94 (100) 0 (0) 0.972 (0.942-1.004) 36 (90) 4 (10) 2.111 (0.364-12.24) 
TT  16 (94.1) 1 (5.9) 2.208 (0.216-22.548) 14 (100) 0 (0) 0.95 (0.885-1.02) 
AT+TT  110 (99.1) 1 (0.9) 0.321 (0.033-3.137) 50 (92.6) 4 (7.4) 1.52 (0.264-8.738) 
  Histological grade Histological grade 
  G1+G2 G3+G4 OR (95% CI) G1+G2 G3+G4 OR (95% CI) 
 rs10491121 
AA  45 (81.8) 10 (18.2) 1.00 (reference) 13 (54.2) 11 (45.8) 1.00 (reference) 
AG  95 (87.2) 14 (12.8) 0.663 (0.274-1.608) 16 (37.2) 27 (62.8) 1.994 (0.724-5.495) 
GG  40 (71.4) 16 (28.6) 1.8 (0.734-4.417) 9 (33.3) 18 (66.7) 2.364 (0.761-7.343) 
AG+GG  135 (81.8) 30 (18.2) 1 (0.453-2.206) 25 (35.7) 45 (64.3) 2.127 (0.831-5.446) 
 rs1634507 
GG  81 (82.7) 17 (17.3) 1.00 (reference) 18 (48.6) 19 (51.4) 1.00 (reference) 
GT  81 (85.3) 14 (14.7) 0.824 (0.381-1.781) 16 (37.2) 27 (62.8) 1.599 (0.654-3.906) 
TT  18 (66.7) 9 (33.3) 2.382 (0.916-6.196) 4 (28.6) 10 (71.4) 2.368 (0.628-8.926) 
GT+TT  99 (81.1) 23 (18.9) 1.107 (0.554-2.212) 20 (35.1) 37 (64.9) 1.753 (0.754-4.074) 
 rs1719153 
AA  90 (82.6) 19 (17.4) 1.00 (reference) 19 (47.5) 21 (52.5) 1.00 (reference) 
AT  80 (85.1) 14 (14.9) 0.829 (0.39-1.76) 13 (32.5) 27 (67.5) 1.879 (0.759-4.655) 
TT  10 (58.8) 7 (41.2) 3.316 (1.12-9.815)* 6 (42.9) 8 (57.1) 1.206 (0.354-4.115) 
AT+TT  90 (81.1) 21 (18.9) 1.105 (0.557-2.195) 19 (35.2) 35 (64.8) 1.667 (0.723-3.841) 
The odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated by logistic regression analysis. The adjusted odds ratios (AORs) with their 95% CIs were 
estimated by multiple logistic regression analysis that controlled for smoking, consumption and age. * p<0.05.  
HER2 = human epidermal growth factor receptor 2; TNBC = triple-negative breast cancer; T2 = tumor >20 mm but ≤50 mm in greatest dimension; N0 = lymph node-negative; 
N1 = cancer has spread to 1–3 lymph node(s); N2 = 4–9 lymph nodes; N3 = ≥10 positive lymph nodes; M0 = noninvasive cancer; M1 = cancer has metastasized to organs or 
lymph nodes away from the breast; G1 = well differentiated (low grade); G2 = moderately differentiated (intermediate grade); G3 = poorly differentiated (high grade); G4 = 
undifferentiated (high grade). 

 

 
Figure 1. Linkage disequilibrium patterns of three single nucleotide 
polymorphisms in the CCL4 gene. 

Discussion 
CCL4, also known as macrophage inflammatory 

protein-1β (MIP-1β), belongs to the pro-inflammatory 
CC subfamily. MIP proteins recruit pro-inflammatory 
cells and thus play a crucial role in acute and chronic 
inflammatory responses in various conditions 
including asthma, granuloma formation, wound 
healing, arthritis, multiple sclerosis, pneumonia, and 
psoriasis [16]. Accumulating evidences indicated 
CCL4 expression associated with cancer progression 
such as oral cancer and hepatocellular carcinoma [12, 
17]. We have previously suggested that CCL4 gene 
polymorphisms influence susceptibility to oral cancer 
and hepatocellular carcinoma and affect their 
progression [11, 12]. We found that CCL4 rs1634507 
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G/T polymorphism increased a risk in oral-cancer 
susceptibility, but CCL4 rs10491121 A/G 
polymorphism decreased a risk in hepatocellular 
carcinoma. Now, the findings from this study indicate 
that CCL4 SNPs may serve as candidate biomarkers 
for susceptibility to breast cancer. 

The 5-year relative survival rate for breast cancer 
has gradually increased since the early 1990s; between 
2007 and 2011 it was ~89.2%. As breast cancer 
prognosis depends upon the disease stage at the time 
of diagnosis, increasing screening rates and making 
genetic testing more widely available increase the 
chances of early diagnosis [24, 25]. Our study is the 
first to examine the expression of SNPs rs1634507, 
rs10491121 and rs1719153 and their possible 
association with the development of breast cancer. 
Our investigation into possible associations between 
these CCL4 SNPs, clinicopathologic markers, and 
disease susceptibility failed to find any significant 
differences between patients and healthy controls. 
Moreover, CCL4 SNPs did not differ significantly 
according to breast cancer clinical aspects. Amongst 
luminal A and luminal B subtypes, patients carrying 
the AG haplotype at SNP rs10491121 were less likely 
to develop lymph node metastasis compared with 
patients with the AA haplotype, while patients 
carrying the AG + GG haplotype at rs10491121 were 
less likely to develop distant metastasis. The presence 
of the AT haplotype at the SNP rs1719153 increased 
the likelihood of developing pathologic grade 
(G3+G4) disease. 

Linkage disequilibrium is expressed across the 
human genome. Thus, loci can be used as genetic 
markers to locate adjacent variants that participate in 
the detection and treatment of disease. Haplotype 
analyses clarify genetic contribution to disease 
susceptibility [26, 27]. We observed 98% linkage 
disequilibrium between rs1634507 and rs10491121, 
95% linkage disequilibrium between rs1634507 and 
rs1719153, and 97% between rs10491121 and 
rs1719153. These results suggest that these CCL4 
haplotypes play an important role in breast cancer 
development. 

This is the first study to demonstrate a 
correlation between CCL4 polymorphisms and breast 
cancer risk. CCL4 may prove to be a diagnostic marker 
and therapeutic target for breast cancer therapy. 
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