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Abstract 

Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy 
requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative 
phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to 
oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the 
onset of neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences 
of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial 
deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding 
of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, 
respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to 
exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the 
respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, 
oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the 
antioxidant function of hydrogen sulfide (H2S), which also acts through the potassium (KATP/K+) ion 
channel and calcium (Ca2+) ion channels to increase glutathione (GSH) levels. The pharmacological 
activity of H2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase 
(Gpx), and superoxide dismutase (SOD) neutralize H2O2-induced oxidative damage in 
mitochondria. The main purpose of this review is to discuss specific causes and effects of 
mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the 
antioxidant functions of H2S to support the development of advancements in neurodegenerative 
disease treatment. 
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1. Introduction 
Oxygen consumption is essential for cell 

survival. However, oxygen consumption can cause 
cell dysfunction and cell death, due to the production 
of free radicals in mitochondria. Neurodegenerative 
diseases are caused by excessive free radical 
generation within neurons, which leads to neuronal 
cell death in Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Huntington’s disease (HD), and 
amyotrophic lateral sclerosis (ALS). Oxidative stress 

in mitochondria negatively impacts cellular function, 
as lipids, proteins, and nucleic acids are oxidized by 
reactive oxygen species (ROS), by-products of the 
electron transport chain (ETC), and subsequently 
aggregate in a destructive manner [1]. Additionally, 
there is an absence of protective histone molecules to 
protect against ROS because they are routinely 
generated in the inner mitochondrial membrane 
(IMM) [2]. Thus, mitochondrial deoxyribonucleic acid 
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(mtDNA) mutations are caused by excessive ROS 
formation. 

ROS produced in mitochondria comprise 
hydrogen peroxide (H2O2), super oxide (O•

2
−) and 

hydroxyl ion (•OH). In general, oxidative stress 
occurs when ROS are produced at rates higher than 
those at which the body can efficiently neutralize 
reactive metabolites [3]. It has been reported that 
neurodegenerative diseases may occur as a result of 
mitochondrial dysfunction [3], such as abnormalities 
in mitochondrial fusion and fission, increased level of 
cytoplasmic Ca2+, DNA mutation, and mitochondrial 
membrane depolarization. Excessive ROS formation 
also triggers the accumulation of abnormal proteins 
that cause neurodegeneration [4]. For instance, 
oxidative changes in mitochondriamay cause protein 
misfolding in the amyloid-β (Aβ) protein in AD, 
which results in a wide variety of pathological 
symptoms [5]. Oxidative stress has been linked to PD; 
mitochondrial fusion is inhibited by the accumulation 
of α-synuclein (α-syn) protein in PD patients [6]. In 
addition, the mitochondrial proteins, PTEN-induced 
putative kinase 1(PINK1) and parkin, are both critical 
for quality control in mitochondria, and are 
negatively impacted in patients with PD. An 
expanded level of polyglutamate in huntingtin (Htt) is 
the major source of oxidative damage in HD [7,8]; 
mtDNA mutations and structural deformities in the 
mitochondrial genome are responsible for the 
pathology of ALS. A mutation in superoxide 
dismutase 1 (SOD1) leads to overproduction of ROS 
through overexpression of nitric oxide synthase 
(NOS), as well as abnormal gliosis involving 
microglial cells;these changes contribute to the 
pathology of ALS [9].  

Notably, the therapeutic effects of hydrogen 
sulfide (H2S) can reduce the detrimental impacts of 
oxidative stress. The antioxidant functions of H2S are 
exerted by its modifications of enzyme activities, 
including those of glutathione peroxidase (Gpx), SOD, 
and catalase (CAT) [10]. Gpx acts as intracellular 
enzyme that converts H2O2 to lipid peroxide in 
mitochondria. Gpx is often referred to as 
selenocysteine peroxide, and has a key regulatory 
function in the inhibition of lipid peroxidation; 
therefore, it protects cells from oxidative stress. In 
humans, eight enzymes, Gpx1–Gpx8, have been 
identified; among these, Gpx1 is the most abundant, 
and Gpx enzymes are tetrameric in nature. The 
antioxidant properties of all Gpx enzymes can be 
hindered by low expression, and deficiencies of Gpx 
enzymes have been associated with oxidative stress 
[11]. SOD is a very common antioxidant that catalyzes 
the dismutation of O•

2
− to molecular oxygen (O2) and 

increases production of H2O2. Eventually, H2O2 
decomposes to H2O and O2 [12]. When oxidative 
stress increases, the SOD concentration also increases. 
Notably, there are multiple SODs; these include the 
metalloenzymes, iron (Fe)SOD (homodimer and 
tetramer forms) and manganese (Mn)SOD 
(homodimer and homotetramer forms) [13]. 
Simultaneously, CAT reacts efficiently with hydrogen 
donors, such as phenols or peroxides, to limit the 
H2O2 concentration in cells; CAT acts as a first-line 
antioxidant enzyme by mediating the breakdown of 
millions of H2O2 molecules. A high concentration of 
H2O2 is reportedly deleterious to cells [14]. The 
principal focus of this review is to describe 
mitochondrial oxidative stress, oxidative stress- 
induced mitochondrial dysfunctions that are linked to 
the onset of age-associated neurodegenerative 
diseases, and advanced regulatory functions of H2S 
against oxidative stress. 

2. Oxidative stress and mitochondrial 
dysfunction 

Mitochondrial dysregulation was first associated 
with increased ROS formation in a living organism in 
1954 [15]. ROS generation has been related to the 
onset of age-associated neurodegenerative maladies 
and cell signaling pathways [16]. Although the 
presence of a moderate level of ROS is advantageous 
for cellular function, excessive ROS generation leads 
to oxidative damage to cellular functions and 
underlying molecular mechanisms (Figure 1) [15]. 
Mitochondria are sources of intracellular ROS, which 
are formed by mitochondrial complexes I and III of 
the respiratory chain [17]. The metabolic activities of 
mitochondrial complexes generate oxidative stress by 
the production of O•

2
− and H2O2 (Figure 1). Inhibition 

or absence of complex I in the respiratory chain causes 
neuronal apoptosis [18]. For example, mitochondrial 
complex I is inhibited by 1-methyl-4-phenyl- 
pyridinium, a metabolite of 1-methyl-4-phenyl-1,2,3,6 
tetrahydropyridine, which causes cytotoxicity in 
dopamine neurons [19]. Mitochondrial components 
also show altered function under oxidative stress. 
Oxidative stress-induced mutations in mtDNA have 
harmful effects on mitochondrial function over time. 
mtDNA mutations result in abnormalities in the 
oxidative phosphorylation process, which manifests 
as mitochondrial dysfunction through the loss of 
cellular function and eventual apoptosis [20]. In 
addition, 8-hydroxy-2'-deoxyguanosine is a 
biomarker of oxidative damage and DNA damage 
due to free radical attack; this indicates defective 
mitochondrial respiration and impaired antioxidant 
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enzymes, and suggests that apoptotic cell death is 
likely to occur [21,22].  

During aging, oxidative stress and 
mitochondrial dysfunction are associated through the 
erythroid nuclear factor-related factor 2–antioxidant 
response element (Nrf2–ARE) pathway. Nrf2–ARE is 
the master regulatory pathway for redox homeostasis 
[23]. In the presence of oxidative stress, Nrf2 binds to 
the ARE. Nrf2 deficiency impacts antioxidant 
enzymes, thereby causing impaired regeneration in 
aged skeletal muscle [24]. Coleman et al. described 
that muscle fibers of UCP1-transgenic mice showed 
impaired mitochondrial respiration. Aged Nrf2 
knockout mice reportedly showed increased ROS and 
4-hydroxynonenal (4-HNE) in muscle; however, this 
finding is controversial, as another study reported an 
altered redox balance due to an increased level of 
oxidative stress, and stated that there were no clear 
adverse effects of Nrf2 deficiency [25]. Mitochondrial 
Bcl-2 family proteins and apoptotic Bax proteins also 

play key roles in extrinsic and intrinsic cell death 
pathways. Cytochrome c releases the Bax protein, 
which results in apoptosis [26]. 

3. Mitochondrial oxidative stress and 
neurodegenerative disease 

Central nervous system (CNS) functions are 
related to mitochondrial function. Notably, changes in 
the mitochondrial genome, abnormalities in 
mitochondrial dynamics, excessive production of 
ROS, and accumulation of misfolded protein all might 
contribute to the onset of neurodegenerative diseases 
[27]. Abnormalities in mitochondrial dynamics and 
accumulation of metals have been shown to 
synergistically produce ROS [27]. In particular, AD, 
PD, HD, ALS, and other neurodegenerative diseases 
are reported to result from ROS-induced mutations in 
mtDNA [28]. 

 

 
Figure 1. Molecular mechanism of mitochondrial oxidative stress and dysfunctions. Oxidative stress and resultant components incite neurodegeneration through 
three noteworthy causes including (a) mitochondrial dysregulation, excitotoxicity, and protein aggregation (b) mtDNA mutation, and (c) energy depletion. ROS is generated that 
reduces membrane permeability between OMM and IMM. This permeability difference disturbs ATP synthesis and calcium (Ca2+) homeostasis between the membranes. Under 

oxidative stress condition, superoxide (O•
2
−), hydrogen peroxide (H2O2), and hydroxyl (•OH) radicals are formed in IMM. Here, the star mark on mitochondrial complex I, II, III 

indicates that they are more prone to generate free radicals. Abbreviations: ETC, electron transport chain; IMM, inner mitochondrial membrane; IMS, intermembrane space; 
OMM, outer mitochondrial membrane; ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; GPx, glutathione peroxidise, SOD, super oxide 
dismutase; CAT, catalase. ROS is generated that reduces membrane permeability between OMM and IMM. 
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Age-regulated genes may impact biological 
function by either increasing production of ROS or 
reducing the availability of ATP, which is 
fundamental for mitochondrial repair; in addition, the 
absence of ATP can cause cellular apoptosis [29]. 
Maharjan et al. reported that mitochondria act as an 
important regulator of cellular apoptosis with respect 
to neurodegeneration. Defects in the mitochondrial 
ETC system, deficiency in cytochrome oxidase c, and 
differences in mitochondrial membrane potential can 
cause disruption of energy metabolism and 
subsequent apoptosis [30]. For instance, inhibition of 
mitochondrial complex I in PD and ALS, complexes II 
and III in HD, and complexes II and IV in AD 
stimulate disorganized oxidative phosphorylation 
and result in apoptosis [31]. Furthermore, apoptotic 
pathways are initiated by caspase activity; caspases 
are a group of cysteine proteases that regulate 
apoptosis: caspase-3 was reported to participate in 
Aβ1-42-induced apoptosis in SH-SY5Y neuronal cells, 
based on oxidative stress via metallic reaction [32]. 
Normally, oxidative damage to cellular components 
results in altered catalyst function and protein 
structure [33]. 

PD is the most prominent neurodegenerative 
disorder. At the cellular level, PD is associated with 
an abundance of ROS that results in modified 
catecholamine digestion due to either altered 
mitochondrial ETC function or increased iron 
deposition in the substantia nigra part compacta 
(SNpc). Apoptosis then occurs because dopamine 
neurons experience increased vulnerability [6]. 
Moreover, O•

2
− radicals are formed as a result of 

insufficient oxidative phosphorylation in 
mitochondria which is the principal cause of ROS 
formation. 

In HD, the underlying reason for oxidative 
damage is the presence of mutant Htt, which 
contributes to ROS production in both neuronal and 
non-neuronal cells [34]. Iron disorders may underlie 
oxidative stress in affected cells; these disorders 
include increased accumulation of ferritin, which is 
the main form of cellular iron, due to altered iron 
homeostasis [35]. In HD, mutant Htt binds to p53; 
subsequently, increased levels of p53 and associated 
transcriptional factors cause increased depolarization 
of mitochondrial membrane potential [36]. SOD1 has 
generally been identified as a cytoplasmic protein and 
is located in the outer mitochondrial membrane, 
intermembrane space, and IMM; SOD1 mutations are 
suspected to constitute the oxidative stress-induced 
factor in the onset of ALS. Notably, mutant SOD1 was 
proposed to result from increased levels of O•

2
− which 

can cause oxide to deliver peroxynitrite; this negative 

feedback system suppresses SOD1 functional capacity 
[37]. SOD1 has generally been identified as a 
cytoplasmic protein and it is located in the outer 
membrane of mitochondria (OMM), IMS, and IMM, 
where SOD1 mutation is considered as the oxidative 
stress-induced factor in ALS. 

H2S neutralizes ROS and ROS-induced 
mitochondrial damage in neurodegenerative diseases, 
and could be harnessed to achieve progressive 
therapeutic outcomes for oxidative stress-affected 
neurons, as described in the following sections.  

4. H2S 
4.1 Synthetic precursors and metabolism of 
H2S 

H2S is endogenously produced from pyridoxal 
phosphate (PLP)-dependent enzymes in mammalian 
tissues and the normal level of H2S for both plasma 
and tissue is 50–160µM [38]. The H2S-producing 
enzymes are cystathionine β synthase (CBS), 
cystathionine γ lyase (CSE), cysteine aminotrans-
ferase, and a zinc-dependent enzyme, 3-mercap-
topyruvate sulfurtransferase (3MST) [39]. Among 
these enzymes, CBS is highly expressed in the 
hippocampus and cerebellum, which are components 
of the CNS. CBS is a precursor protein, which is 
regulated by transforming growth factor α and cyclic 
adenosine monophosphate [40].CSE is generally 
considered to be present in endothelial cells, but has 
recently been observed in microglial cells, cerebellar 
granular neurons, and spinal cord [38]. CSE produces 
H2S, as well as pyruvate and ammonia byproducts, by 
catalyzing L-cysteine. Chiku et al. reported that 
CSE-mediated α and β-elimination of L-cysteine 
produced a yield of 70% of the physiological level of 
H2S [41]. However, approximately 90% of the 
physiological level of H2S is derived from α, 
γ-elimination of homocysteine. In the presence of 
PLP, CSE activity is reduced because of increased Ca2+ 
concentration [42]. An additional source of H2S is 
bound sulfane sulfur, where intracellular sulfur is 
stored in the absence of GSH and cysteine [43]. Bound 
sulfur is produced by 3MST; L-cysteine and 
α-ketoglutarate combine to serve as the source of 
3MST [43]. 

H2S metabolism occurs during mitochondrial 
oxidation. Sulfide is oxidized to elemental sulfur in 
the presence of quinine oxidoreductases (SQRs). 
During reduction of cysteine disulfides, SQRs 
produce cysteine disulfides and persulfide groups 
[44]. Each persulfide is oxidized by sulfur 
deoxygenase (SDO), thus producing sulfite (H2SO3) 
[44]. Oxygen consumption is necessary during H2S 
metabolism (Table 1) and one mole of oxygen is 
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consumed for each mole of H2S oxidized in the ETC 
system [45].  

In contrast to CBS and CSE, 3MST is primarily 
present in kidney, liver, and cardiac cells, where it is 
mainly located in mitochondria; H2S is also produced 
in mitochondria. Recent studies have shown that, in 
the presence of 3MST, brain homogenates of CBS 
knockout mice produced levels of H2S similar to those 
of wild-type mice. 

 

Table 1: Synthetic precursors and metabolites of 
hydrogen sulfide (H2S) 

H2S produced 
enzymes 

Substrates Synthesized products 

H2S synthesis 
CSE L-Cysteine Pyruvate, H2S, ammonia 
CSE L-Cystathionine L-Cysteine, α-ketobutyrate, 

ammonia 
CSE L-Homocysteine α -ketobutyrate, H2S, ammonia 
CBS L-Homocysteine, 

L-cysteine 
L-Cystathionine, H2O 

CBS, CSE L-Homocysteine, 
L-cysteine 

L-Cystathionine, H2S 

CBS, CSE L-Cysteine, L-lanthionine, H2S 
CBS,CSE L-Homocysteine L-Homolanthionine, H2S 
CAT L-Cysteine, glutamate 3-Mercaptopyruvate, 

α-ketogluterate  
3MST 3-mercaptopyruvate 3-Mercaptopyruvate 
DAO D-cysteine Pyruvate, H2S 
H2S Metabolism 
SQR H2S SQR persulfide 
Rhodanese Oxidized GSH, SO32− GSH, SSO32− 
Thiosulfate 
reductase 

SSO32−, GSH SO32−, H2S 

Sulfite oxidase SO32− SO42− 
CSE, cystathionine γ lyase; CBS, cystathionine β synthase; CAT, cysteine 
aminotransferase; 3MST, 3-mercaptopyruvate sulfurtransferase; DAO, diamine 
oxidase; SQR, sulfide quinone oxidoreductase; GSH, glutathione. 

 

4.2 Antioxidant and antiapoptotic functions of 
H2S 

H2S provides enzymatic antioxidant function by 
mediating the activities of Gpx, SOD, and CAT. Gpx is 
the most common H2S-mediated antioxidant 
derivative, which acts through reduction of peroxides 
[46]. The antioxidant function of Gpx involves 
production of non-biological thiols when •OH 
radicals are present; these are less likely to cause 
oxidative damage than H2O2, which is highly 
reactive and has deleterious effects [47,48]. 

SODs play major antioxidant roles, especially 
against O•

2
−. Generally, SODs exhibit three isoforms: 

cytoplasmic copper (Cu)/zinc (Zn) SOD (SOD1), 
mitochondrial MnSOD (SOD2), and extracellular 
Cu/Zn SOD (SOD3). O•

2
− is modified by SOD 

enzymes during cell signaling [49]. The importance of 
each SOD as an antioxidative agent is illustrated by 
the pathophysiology of CNS degenerative diseases. 
Initially, SOD converts O•

2
− to H2O2; then, H2O2 is 

converted to H2O by CAT or Gpx (Figure 2). Increased 
SOD1 activity elevates H2O2 levels, such that they 
become toxic [49]. The catalytic activities of SOD1 
involve reduction and reoxidation of Cu and Mn at 
the active site of the enzyme; these comprise 
regulators of O•

2
− proportion [50]. SOD1 and SOD2 

both reduce the incidence of H2O2-induced oxidative 
damage [51].  

CAT catalyzes H2O2 to O2 and H2O. H2O2 

participates in H2S metabolism in hypoxia, suggesting 
that H2O2 is an effective electron receptor in this 
reaction [52]. Generally, CAT generates H2S from 
carbonyl sulfide, cysteine, GSH, or oxidized GSH, and 
serves as a sulfur oxidase or sulfur reductase. In the 
presence of the CAT inhibitor, sodium azide (NaN3), 
H2O2 significantly expedites H2S metabolism (Figure 
2). Apoptotic signals by caspase-1 and caspase-3 are 
sequentially activated in SOD1 mutant mice: 
caspase-1 is active at an early stage and caspase-3 is 
active in the final stage of cell death. 

5. H2S functions in Ca2+ and KATPion 
channels 

In the CNS, intracellular Ca2+ plays key roles in 
both normal and pathological signaling. H2S has been 
found to promote increased Ca2+levels in neurons, 
astrocytes, and microglial cells. In serotonergic 
neurons, a biphasic response is produced by H2S 
during depolarization [39]. In addition, plasma 
membrane voltage-gated channels are activated by 
H2S, including T-type channels, whereas L-type Ca2+ 
channels are expressed in neurons and secrete both 
neurohormones and neurotransmitters [53]. The 
action of H2S on L-type Ca2+ channels were 
demonstrated through a study of the effects of the 
L-type channel-specific blocker, nifedipine, in rat 
cerebellar granule neurons [38]. Recently, H2S was 
discovered to enhance stimulation of Ca2+ entry via 
L-type channels; this Ca2+ was shown to participate in 
neurotransmitter release and gene expression. 
Furthermore, T-type channels have a role in somatic 
pain; they act against high-voltage gated channels or 
have a low activation threshold. T-type Ca2+ channels 
are present in hippocampal CA1 cells, thalamic 
neurons, and Purkinje cells in the cerebellum [54]. 
Additionally, H2S activates the Cav3.2T-type channel 
isoform, which regulates rhythmic neuronal function 
and neuronal differentiation [55]. Furthermore, 
physiological concentrations of H2S mobilize 
intracellular Ca2+ storage in various cells (Figure 3). 
Intracellular Ca2+ storage participates in long-term 
potentiation in neurons and facilitates the release of 
glutamate from presynaptic terminals [55]. 

KATP channels are considered primary molecular 
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targets for H2S. Generally, KATP channels aid in 
neurotransmitter release from presynaptic neurons, 
control seizures, and provide neuroprotection in 
hypoxic conditions [56]. H2S hyperpolarizes neurons 
in the CA1 by K+ efflux through ATP-dependent KATP 

channels, which are opened as a result of oxidative 
glutamate toxicity [57]. By opening KATP channels, H2S 
increases GSH levels. H2S is also present in 
immortalized mouse hippocampal cells, where it 
facilitates the opening of ATP-dependent KATP 
channels [58]. Overall, Ca2+ channels and KATP 
channels contribute to H2S-mediated cell signaling. 

6. Neuroprotective potential of hydrogen 
sulfide as antioxidant: 

Progressive loss of neurons is responsible for 
neurodegenerative disease.H2S acts as an effective 
antioxidant to fight against oxidative stress in 
neurodegenerative diseases, through the action of H2S 
donors or enzymatic antioxidant mechanisms 
(Figure 4).  

6.1 AD 
As a gasotransmitter, the antioxidant function of 

H2S in AD is vital. General hallmarks of AD include 
the mutation of amyloid precursor protein (APP) and 

aggregation of both Aβ and tau proteins. According to 
a clinical study, elevated homocysteine levels were 
decreased and excitatory amino acid transporter 3 
(EAAT3/EAAC1) inhibited the GSH level [59]. 
Increased expression of H2S through Nrf2 indicates 
that MDA and 4-HNE are generated as a result of 
reduced homocysteine. Here, Nrf2 is the central 
mediator of redox balance. In addition, 
intraperitoneal injection of sodium hydrosulfide 
(NaHS) in experimental APP/PS1 mice causes 
downregulation of beta-secretase 1 (BACE1) through 
the p13/Akt pathway; notably, BACE1 is responsible 
for the production of Aβ peptides. NaHS is an H2S 
donor that has been shown to decrease Aβ plaques 
and increase spatial memory [60]. Moreover, NaHS 
reduces phosphorylation of APP and tau proteins at 
critical sites and diminishes morphological damage, 
including damage mediated by neuronal death [61]. 
NaHS acts against homocysteine-induced cognitive 
dysfunction [62]. Parker et al. showed that 
mitochondrial complexes II and IV were deficient in 
hippocampal neurons of AD patients. 
WhenH2O2causes mitochondrial membrane damage 
and excess Ca2+, cellular GSH regulates 
intramitochondrial protein thiols and selective 
membrane permeability [63]. 

 

 
Figure 2. Mechanism of H2S in autoxidation and antiapoptosis.GSH reacts with oxygen free radical which directly form the thiol radical and later GSSH. SOD catalyses 

the dismutation of O•
2
− and converted to H2O and O2. H2O2 is also attenuated by the catalysis of CAT and Gpx. H2S also provides antiapoptotic function by NF-κBand caspase 

3. H2S from CSE plays role in sulfhydrating the p65 subunit of NF-κBat cysteine 38. Abbreviations: GSSH, oxidized glutathione; GRD, glutathione reductase; NF-κB, nuclear factor 
kappa B. 
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Figure 3. Cell signaling regulation of endogenous H2S in the central nervous system. Physiologically, H2S is an important signaling molecule and regulate L and T type 
Ca2+ channel. As a key regulator of Ca2+signaling in neuron, the concentration of NaHSis increased.The activation of cAMP/PKA may open the Ca2+ channel initiates 
phosphorylation which helps to open several Ca2+ channels. Besides, champ/PKA pathway, cell signaling is mediated by MAPK, ERK, P13K, and PKC pathways. Abbreviations: 
NaHS, sodium hydrogen sulphide; cAMP, cyclic adenosine monophosphate; MAPK, mitogen activated protein kinase; PKA, protein kinase A; PKC, protein kinase C; ERK, 
extracellular regulatory kinase. 

 
Figure 4. Resultant effects of mitochondrial oxidative stress and therapeutic potential of H2S in neurodegenerative diseases. The vital role of H2S against 
oxidative stress, the amplifying H2S level induces several molecular changes in neurodegenerative diseases by the increasing and decreasing the enzymes including CBS, CSE, and 
3-3MST. H2S also exerts its antioxidant function by binding drug molecule and activating protein precursors.Abbreviations: Aβ, amyloid β; AD, Alzheimer’s disease; ALS, 
amyotrophic lateral sclerosis; CBS, cystathionine β synthase; CSE, cystathionine γ lyase; 3MST, 3-mercaptopyruvate sulfurtransferase; HD, Huntington disease; PD, Parkinson’s 
disease; L-DOPA, levodopa; 6-OHDA, 6-hydroxydopamine. 
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CBS in the CNS and CSE in the cardiovascular 
system are sources of endogenous H2Sgeneration. In 
the brain, 3MST is also a significant source of H2S. 
Reduced expression levels of CBS and 3MST have 
been observed in neurons, such as rat PC12 cells, 
upon exposure to NaN3; conversely, H2S suppresses 
NaN3-induced oxidative stress [64]. Moreover, 
dysfunction of CBS in the trans-sulfuration pathway 
may reduce H2S generation in AD. Furthermore, 
S-adenosyl-L-methionine, an activator of CBS, is 
lower in AD brains than in those of normal 
individuals. 

6.2 PD 
H2S has also a potential role in the 

neuromodulation of PD. To eliminate oxidative 
elements, continuous Gpx action is needed to recycle 
reduced GSH to its oxidized form. Overexpression of 
CBS or H2S donors provides neuroprotection against 
6-hydroxydopamine-induced neurotoxicity [62]. H2S 
signaling is affected by the E3-ubiquitin ligase, 
parkin,which is a misfolded protein in PD. The main 
targets for sulfhydration on parkin are cys95, cys59, 
and cys182 [62]. Importantly, 6-hydroxydopamineis 
widely regarded as the factor responsible for the 
death of dopaminergic neurons through dopamine 
uptake transporters. Two H2S donors, ACS84 and 
ACS50, have the greatest contributions as 
antioxidants. ACS84 exerts L-3,4-dihydroxy-
phenylalanine (L-DOPA)-mediated effects in PD, such 
that it can penetrate the blood brain barrier (BBB) and 
release H2S [65]. Because homocysteine is a precursor 
of H2S, the plasma level of homocysteine can be used 
to assess the effects of H2S in PD in the context of a 
particular drug treatment. L-DOPA is a potent 
anti-PD medication that alleviates symptoms by 
maintaining the dopamine concentration at the 
synapse and reducing motor fluctuations [66]. 
Approximately 15–20% of patients do not respond to 
L-DOPA therapy and may show adverse profiles after 
long-term therapy [67]. According to a clinical study 
by Obeid et al., 87 patients showed high levels of total 
homocysteine (t-homocysteine) with increased levels 
of APP and α-synuclein [68]. A case-control study 
from Nigeria described 80 individuals, 40 of whom 
were healthy controls, while the remaining 40 were 
PD patients of the same age group with high levels of 
homocysteine who received L-DOPA mediated 
treatment [69]. L-DOPA mediated changes in 
homocysteine have revealed key regulatory functions 
in oxidative stress-induced neurological damage [70]. 

6.3 HD 
Polyglutamate repeats in the Htt protein cause 

transcriptional dysfunction in motor neurons in the 

HD mouse model and human HD brain during 
cysteine metabolism when CSE is depleted in cell 
culture. Reduced CSE expression causes lower levels 
of cysteine; as a result, H2S levels are reduced and 
ROS generation is increased in mitochondria (Figure 
4) [62,71].  

CBS might be a useful target for the treatment of 
neurodegeneration in HD. In a recent study, 
hyperhomocystinuria was observed in HD patients, 
as compared to controls, because the mutated Htt 
protein modulates homocystinuria-induced CBS 
activity. Moreover, HD patients are affected by both 
cardiovascular and cerebrovascular diseases [72]. 
Andrich et al. reported the concentration (17.7 
µmol/l) of homocysteine in 34 HD patients treated 
with antidepressants, neuroleptics, benzodiazepines, 
and/or tetrabenazine, compared to the concentrations 
in untreated HD patients (12.6 µmol/l) and 73 healthy 
controls (13.3 µmol/l). In that study, untreated HD 
patients were less severely affected and had shorter 
disease duration than the treated patients, which 
indicates a positive correlation between the plasma 
level of homocysteine and untreated HD [73]. In HD, 
cytosolic CSE is depleted at the transcriptional level 
and could reflect the translocation of CSE to insoluble 
aggregates. In Q111 cells, CSE was depleted to a 
similar extent in both supernatant and particulate 
fractions. Generally, striatal Q111 cells showed 
greater susceptibility to H2O2 stress. mHtt also 
reportedly binds to and inhibits specific protein 1 
(SP1); CSE depletion in HD seems to reflect inhibition 
of Sp1 by mHtt, leading to reduced CSE transcription 
[74].  

6.4 ALS 
H2S can counteract oxidative modification 

through insoluble SOD1 aggregation, which is a 
common feature of ALS. Free cysteine in SOD, 
specifically at Cys111, is responsible for SOD1 
mutation in ALS (Figure 4). However, H2S provides 
an antioxidant function through elevation of CBS [62]. 
The G93A (fALS) mouse model reportedly exhibited 
increased H2S generation in tissues and spinal cord, 
along with increased intracellular Ca2+ levels. In 
addition, elevated H2S was also identified in the CSF 
fluid of ALS patients, which suggests gasotransmitter 
signaling in ALS [62]. Posttranslational modification 
of SOD1 may enable formation of toxic aggregates. In 
a phase III clinical trial of ALS patients, ceftriaxone 
upregulated the GLT-1 (EAAT-2) glutamate 
transporter, this may have corrected glutamate levels. 
Another phaseIII clinical trial reported that high doses 
of methylcobalamin (vitamin B-12) reduced 
homocysteine levels in ALS patients [75]. 

An investigation of the levels of CBS-containing 
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lanthionine (a thioether analogue of cysteine) in ALS 
showed that LanCL1 levels were elevated by 
three-fold in SOD1G93A mice. In contrast, immunoblot 
analysis of spinal cord lysates from mice 
overexpressing wild-type human SOD1 indicated 
altered LanCL1 expression [76]. Therefore, 
CBS-targeting treatment in ALS is not yet clearly 
defined as a therapeutic approach. Further 
investigation is necessary regarding CBS-targeting 
treatment in ALS. 

In summary, H2S exhibits protective effects in 
neurodegenerative diseases through antioxidant 
functioning. Although H2S neutralizes harmful 
oxidative modification in neurodegenerative diseases, 
additional in vivo studies are needed to elucidate 
molecular mechanisms in oxidative stress.  

7. Pharmacological effects of H2S 
The pharmacological effects of H2S are exerted 

by inhibition of H2S/H2S donors or augmentation of 
endogenous H2S; many experimental models have 
demonstrated the protective effects of H2S or potential 
targets of H2S donors in neuromodulation, 
hypertension, and inflammation [44]. Although some 
experimental studies show harmful effects of H2S, 
these are controversial. For instance, sulfide salts 
comprise donors of H2S that may have 
H2S-independent effects. In contrast, lower H2S levels 
may lead to reduced expression levels of CBS and CSE 
inhibitors, known as genetic inhibition. CBS and CSE 
inhibitors may also cause H2S-independent effects 
through genetic inhibition, such as cysteine deficiency 
due to hyperhomocysteinemia and enhanced GSH 
synthesis. Finally, abnormalities have been observed 
in mice in which CBS, CSE, or 3MST have been 
knocked out [77].  

Sulforaphane (SF) is a derivative of H2S, 
synthesized from isothiocyanate, which causes 
enhanced expression of CBS and CSE [78,79]. 
Moreover, in vivo experiments have shown that cell 
signaling pathways, such as p38 MAPK and JNK, are 
activated by SF. After absorption, SF is conjugated 
with GSH by glutathione s-transferase [79]. In terms 
of bioavailability, the plasma concentration and 
metabolic components increased and reached the 
highest levels after 1 and 3 hours, respectively. The 
urinary excretion of SF drugs within 12–14 hours 
reflects rapid elimination [80]. Experimental 
studieshave shown that SF-Cys and SF-N-acetyl 
cysteine (NAC) also exert some bioactivity. In 
neurodegenerative disorders, SFis observed as 
combined metabolites (e.g., SF-GSH, SF-Cys, and 
SF-NAC). SF has also shown poor ability to cross the 
BBB, but reaches the CNS very rapidly [79]. 

Among cysteine derivatives, S-propyl-cysteine 
(SPC), S-allyl-cysteine (SAC), and S-proparglycysteine 
(SPRC) are good substrates from which CBS and CSE 
can produce H2S. SPC, SAC, and SPRC are 
administered to reduce lipid peroxidation and 
increase the activation of GSH, SOD, and Gpx [81]. 
SPRC reduces NF-κB activity, decreases ROS 
production, and inhibits the TNF-α-induced 
inflammatory response [82]. According to Wang et al., 
SPC, SAC, and SPRC all increased H2S generation by 
at least two-fold at the carbon terminal, as measured 
in homogenized rat ventricles. H2S increased in the 
hippocampus of lipopolysaccharide-treated rats in a 
dose-dependent manner [44]. A major pathway by 
which H2S protects against cellular damage is the 
Nrf2-dependent signaling pathway [83].  

The pharmacological activity of H2S-releasing 
drugs in cell signaling has been assessed by in vitro 
studies. Studies of H2S-releasing drug in vivo are more 
difficult than in vitro studies due to physiological and 
pathological conditions. To determine more fully the 
pharmacological effects of H2S-releasing drugs, 
further research is necessary.  

8. Conclusion 
Neurons have the capacity for cell–cell 

communication. When this communication fails, 
symptoms of neurodegenerative diseases occur. As 
discussed above, mitochondrial damage is connected 
to the pathogenesis of neurodegenerative diseases. 
Protein damage, DNA mutations, and membrane 
permeability are vulnerable to oxidative damage, 
which plays a pathogenic role in AD, PD, HD, and 
ALS. Generally, mitochondrial homeostasis is 
maintained by various protein structures and 
functions are not identical among proteins. However, 
it remains unclear how the harmful effects of 
oxidative stress are mediated in specific neuronal 
diseases. Identification of specific disease-related 
proteins, to discern relationships between specific 
proteins and mitochondrial oxidative stress, can be 
achieved through further broad studies. 

Mitochondrial dysfunction due to ROS 
formation is a prominent feature of 
neurodegenerative diseases, dysfunctional 
characteristics should be mitigated through the 
protective effects of the H2S gasotransmitter. 
Furthermore, the details of cellular responses of H2S 
to ROS-mediated oxidative stress must be explored. 
To identify the therapeutic potentials of H2S, 
particular enzyme inhibitors are needed, based on 
their abilities to augment gasotransmitter synthesis. 
The cytoprotective effect of H2S as a signaling 
molecule against ROS, as well as cell-specific 
enzymatic activities (e.g., CBS, CSE, and 3MST), may 



Int. J. Med. Sci. 2019, Vol. 16 

 
http://www.medsci.org 

1395 

add further protection against neurodegenerative 
diseases. 
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