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Abstract 

The intervertebral disc (IVD) is the largest avascular organ of the body. It is composed of three 
parts: the nucleus pulposus (NP), the annulus fibrosus (AF) and the cartilaginous endplate (CEP). 
The central NP is surrounded by the AF and sandwiched by the two CEPs ever since its formation. 
This unique structure isolates the NP from the immune system of the host. Additionally, molecular 
factors expressed in IVD have been shown inhibitive effect on immune cells and cytokines 
infiltration. Therefore, the IVD has been identified as an immune privilege organ. The steady state of 
immune privilege is fundamental to the homeostasis of the IVD. The AF and the CEP, along with the 
immunosuppressive molecular factors are defined as the blood-NP barrier (BNB), which establishes 
a strong barrier to isolate the NP from the host immune system. When the BNB is damaged, the 
auto-immune response of the NP occurs with various downstream cascade reactions. This effect 
plays an important role in the whole process of IVD degeneration and related complications, such as 
herniation, sciatica and spontaneous herniated NP regression. Taken together, an enhanced 
understanding of the immune privilege of the IVD could provide new targets for the treatment of 
symptomatic IVD disease. However, the underlying mechanism above is still not fully clarified. 
Accordingly, the current study will extensively review and discuss studies regarding the immune 
privilege of the IVD. 
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Introduction 
Intervertebral disc (IVD) degeneration is one of 

the most common contributors to spinal degenerative 
disease, which leads to individual sufferings such as 
acute/chronic pain, disability and psychologi-
cal problems, causing enormous social and economic 
burden [1, 2]. Current strategies for IVD degeneration 
management include conservative and surgical treat-
ment [3]. Recently, biological options, such as bio-
materials application, cell translation and genetic 
modification, have shown promising beneficial effects 
on IVD regeneration [4-7]. However, the pathologi-

cal process of IVD degeneration is still not fully 
understood.  

As the largest avascular organ of the body, the 
IVD sits between the vertebras and is responsible for 
the support, durability and flexibility of the spine [8]. 
Anatomically, the IVD is a complex tissue comprising 
of three parts: a central proteoglycan-rich core, the 
nucleus pulposus (NP), an outer circumferential ring 
of fibrocartilage, the annulus fibrosus (AF), and the 
two cartilaginous endplates (CEP) adjoining the 
vertebra bodies [9]. The gelatinous NP is composed of 
cell clusters embedded in a proteoglycan-collagen- 
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rich extracellular matrix (ECM). Ever since its 
formation, the NP tissue has been trapped in the IVD 
by the surrounding AF and CEP, and this unique 
structure isolates the NP from the immune system of 
the host. Meanwhile, various ingredients of the NP 
were found to cause auto-immune reactions after 
exposure to the host immune system during IVD 
degeneration progress [10, 11]. For this reason, the 
IVD has been identified as an immune privilege 
organ. In fact, these features have long been observed 
and the concept of IVD immune privilege has been 
proposed. Although the immune privilege status is 
essential for IVD homeostasis and normal function, 
there have been no studies summarizing the state-of- 
the-art in this field until now. Therefore, the current 
study will extensively review and discuss relative 
studies regarding the immune privilege of the IVD.  

The development of the IVD 
The IVD is derived from embryonic structures 

termed as the sclerotome and notochord between the 
developing vertebrae. With the formation of verte-
brae, sclerotome condenses around the notochord to 
form the vertebrae and the putative AF. At the same 
time, notochordal is contracted from the vertebral 
body and expands into the area of the future NP. The 
notochordal is compressed and become entrapped in 
a dense ring of sclerotome-derived connective tissue. 
The centralized notochordal element develops to the 
NP tissue in the early fetal life and grows rapidly in 
the late fetal life and early infancy. On the other hand, 
the surrounding dense ring of sclerotome-derived 
connective tissue develops to the AF with abundant 

ECM containing collagens and glycoproteins. Mean-
while, chondrocyte differentiation and endochondral 
bone formation occur in the vertebral bodies with 
high concentrations of bone morphogenetic protein 
(BMP) activity [12]. When the bony vertebra is 
formed, hyaline cartilage adjacent to the IVD is main-
tained and develops to the CEP at the end plate 
(Figure 1). In the early stage of human life, the NP is 
populated by clusters of large, vacuolated noto-
chordal cells and by small chondrocyte-like cells [13]. 
However, by the second decade of life, the notochor-
dal cells in the NP disappear, and the NP transitions 
from a notochordal structure to a tissue embedded 
with small chondrocyte-like cells [14]. It is speculated 
that early IVD degeneration happens with the 
disappearance of notochordal cells [15]. During this 
process, it is noteworthy that the NP tissue is sealed 
and isolated from the immune system ever since its 
formation at the beginning of IVD development. 

The blood-NP barrier 
Immune privilege organs are operationally 

defined as regions in the body where foreign tissue 
grafts can survive and extend with indefinite periods 
of time, while similar implants placed at regular 
regions of the body are acutely rejected. Well studied 
structures include the eye [16] and the brain [17], 
along with the testis [18] and pregnant uterus [19]. In 
these structures, barriers between the internal 
environment and the host immune system have been 
widely observed and explored in-depth. However, the 
mechanism of NP-host immune system isolation is 
still undefined. 

 

 
Figure 1. Development of the intervertebral disc (IVD). A. Sclerotome condenses around the notochord to form the vertebrae and the putative annulus fibrosus 
(AF) while the notochordal is contracted from the vertebral body and expands into the area of the future nucleus pulposus (NP) area. B. The notochordal is 
compressed and becomes entrapped in the surrounding dense ring of sclerotome-derived connective tissue, which develops to the AF. C. Endochondral bone 
formation occurs in the sclerotome vertebra and expands to become bony vertebra. Hyaline cartilage adjacent to the IVD is maintained and develops to the 
cartilaginous endplate (CEP). 
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Accumulating evidence has suggested the 
existence of machinery that limits immunocytes and 
immune mediators entering the NP tissue in IVD. This 
machinery, here, could be defined as a blood-NP 
barrier (BNB), which is a complex composition of 
physical and molecular factors. In anatomical view, 
the BNB is a region that isolates the NP tissue from 
the host immune system. It is generally composed of 
the AF and the CEP. The AF is composed of 15-25 
concentric layers, which consists of alternatingly 
aligned oblique collagen fibers interspersed with 
proteoglycans. This feature holds the NP by confine 
its swelling pressure and resisting shear and tensile 
stresses from the internal pressure exerted by the NP 
[12]. The CEP is a layer of cartilage with about 0.5-1 
mm thickness. It contains ECM of aggrecan and 
collagens with chondrocytes embedded in it [20]. The 
CEP serves not just as an interface between the soft 
NP and the dense bone of the vertebrae, but as a 
physical barrier that prevents immune cells and 
cytokines to the bone. In addition, studies have shown 
that the high proteoglycan concentration, together 
with micro-environment of high physical pressure, 
inhibits the ingrowth of blood vessels [21], which act 
as significant channel of immunocytes infiltration. 
Therefore, the AF and the CEP constitute a strong 
basement isolating the NP tissue from the host 
immune system.  

On the other hand, pilot studies have found the 
inhibition effect of molecular factors expressed in IVD 
and indicated their important role in the long-term 
maintenance of IVD immune privilege. Studies 
showed that Fas ligand (FasL), which is an apoptosis 
inducer and widely expressed in other immune 
privilege sites, exists in human NP tissues [22, 23]. In 
our previous studies, we found that FasL could 
induce apoptosis of both vascular endothelial cells 
and immunocytes including macrophages and CD8+T 
cells [24, 25]. These studies indicate that FasL might 
act as a molecular barrier by eliminating blood vessel 
infiltration and immune cells recruitment. In another 
study, Wiet et al. found that healthy AF conditioned 
medium obtained from AF cultures could inhibit mast 
cell activation by downregulating its expression of 
vascular endothelial growth factor (VEGF), tumor 
necrosis factor (TNF)-α, interleukin (IL)-1β and 
chemokine (C-C motif) ligand 2 (CCL2/MCP-1), and 
inhibit mast cell induced angiogenesis [26]. In 
addition, numerous studies have reported the protec-
tive effect of notochordal cells in IVD and its 
suppressive impact on inflammation [27, 28]. Cornejo 
et al. and Kwon et al. found soluble factors from 
notochordal cells inhibit endothelial cell invasion and 
vessel formation by suppressing VEGF signaling [29, 
30]. Meanwhile, Purmessur et al. found intact glycos-

aminoglycans from IVD-derived notochordal cell- 
conditioned media inhibit neurite growth while 
maintaining neuronal cell viability [31]. Yet, in the 
study of de Vries et al., the anti-angiogenic and anti- 
neurogenic effects of notochordal cell-conditioned 
media were not observed [32]. This is, as the authors 
pointed, attributed to the different life stages and 
breeds of sacrificed animals, and cell culture condi-
tions. However, evidence is still limited in the inter-
action between notochordal cells and immunocytes, 
and the role of notochordal cells in IVD immune 
privilege needs more studies.  

Collectively, current studies are still limited in 
the immunosuppressive effects of molecular factors in 
IVD. The exact molecules mediating these effects are 
still not fully understood. Multiple factors such as 
exosomes and miRNAs might be involved and more 
studies are needed to clarify the mechanism in this 
aspect. Altogether, the AF, the CEP and molecular 
factors such as FasL, establish a unique architecture 
for immune privilege resembling that of a medieval 
castle (Figure 2A). 

Auto-immune response of the NP 
In IVD degeneration, BNB damage such as 

fissure and tear is commonly observed as pathological 
change in the AF and CEP [33, 34]. It has been shown 
that fissure of AF is mechanically and chemically 
conducive to the ingrowth of blood vessels [35]. The 
auto-immune response and downstream cascade 
reaction starts when the BNB is damaged. In fact, as 
early as the 1960s, studies have found the evidence of 
auto-immune response of the degenerated NP in 
patients and animals [36, 37], and indicated 
that radicular pain of a lumbar disc herniation results 
from chemicals of exposure of the NP and related 
auto-immune response [38]. Following studies were 
conducted trying to explore this phenomenon. In 
particular, Satoh et al. studied eight patients with 
lumbar disc herniation and found antigen-antibody 
complexes seem to be commonly present in the 
herniated NP tissue [39]. To identify the immunocyte 
types, Geiss A et al. found activated T and B cells were 
elevated by autologous NP subcutaneously in an 
animal model [40]. In another study, they found that T 
cells could be activated by autologous NP tissue 
simulation [41]. Murai et al. found that macrophages 
and NK cells could recognize autologous NP cells and 
showed positive cytotoxic effects by comparation 
of wild type mice and immune-deficient mice [42]. 
Moreover, Geiss A et al. found predominately 
plasmacytoid dendritic cells (PDCs) along with few 
macrophages and memory T cells in both sequest-
rated and extruded discs, suggesting that (PDCs) play 
an important role in initiation of an immune 
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response of NP while macrophages may mediate disc 
resorption at a later stage [43]. Most recently, Lee et al. 
showed macrophage infiltration into injured IVD 
along with pathological innervation in long-term 
histological analysis of punctured mice IVD model 
[44]. In canine IVD herniation, Monchaux et al. found 
that monocytes and macrophages existed in extruded 
IVD material [45]. These findings suggested compli-
cated types of immunocytes involve in the auto- 
immune response of the NP in different stages and 
macrophages might play an important role in this 
pathological process. More studies are needed to 
explore the underly mechanism of their roles. 

The direct evidence of the NP auto- 
immune response was found by Capossela et al., who 
identified IgGs against collagen type I, II, V, and 
aggrecan in human degenerated IVD samples [10]. 
Moreover, inflammatory factors were found to have 
increased expression in the study of Takada et al, who 
found IVD autografts induced TNFα, IL-6 and IL-8; as 
well as cyclooxygenase 2 up-regulation and macro-
phage infiltration in sciatica [46]. By co-culture 
of autologous or allogeneic peripheral blood mono-
nuclear cells and NP cells, Stich et al. found 
elevated immune cell proliferation levels in 3D- 
cultures than 2D-cultures, and a general trend to 
higher responses for NP cells from severely degene-
rated IVD tissue [47], indicating that auto- 
immune response could vary depending on different 
cell cultures and degeneration degrees. More recently, 
Silva et al. established a model of IVD organ culture, 
found that human macrophages could be polarized 
toward a more pro-inflammatory profile by degene-
rated IVD tissue, and interfere with IVD ECM 
remodeling by downregulating aggrecan and collagen 
II gene expression in the presence of IL-1β [48]. These 
findings showed that with the breakdown of the BNB, 
the exposed NP tissue could induce auto- 
immune response, which stimulates both immuno-
cytes activation and inflammatory factors infiltration 
(Figure 2B). 

Meanwhile, the recruitment of immunocytes 
could lead to the deterioration of IVD degeneration 
via cell-cell biocommunication and cytokines 
secretion. As for the IVD cells, studies have showed 
altered phenotypes and function in various 
auto-immune reactions. Ni et al. found that 
M1-polarized macrophages promote degenerative 
phenotypes in NP cells with increased expression of 
key matrix catabolic genes, reduced the expression of 
major matrix-associated anabolic genes and 
upregulated transcription of inflammation-related 
genes [49]. Also, in a co-cultures system, Yang et al. 
showed that AF or NP cells exposed to macrophages 
upregulated the expression of pro-inflammatory 

mediators [50]. As for the ECM, studies have found 
that immunocytes could interfere with IVD ECM 
remodeling and downregulate aggrecan and collagen 
II expression [48]. In addition, the expression of 
matrix metalloproteinases (MMPs) and a disintegrin 
and metalloproteinase with thrombospondin motifs 
(ADAMTSs) were increased in IVD with auto- 
immune reaction, causing the degradation of ECM 
[51, 52]. Taken together, the auto-immune reaction 
could stimulate immunocytes and inflammatory cyto-
kines infiltration, and these factors could in turn 
impact on the IVD with harmful influence. 
Nevertheless, more studies are desired to explore the 
underlying mechanism and downstream pathways in 
the auto-immune response of NP tissue. 

Implications for clinical management of IVD 
degeneration 

The steady state of IVD immune privilege is 
fundamental to the homeostasis of the IVD. The AF 
and the CEP, along with the immunosuppressive 
molecular factors, being regarded as the BNB, esta-
blish a strong barrier segregating the immune system 
from healthy IVD. However, the breakdown of the 
immune privilege could lead to profound conse-
quences in IVD degeneration. 

In the early stage of IVD degeneration, the 
breakdown of the BNB and the auto-immune 
reactions could act as a trigger with the downstream 
cascade reactions accelerating the pathological 
progress. Signs of BNB damage and NP exposure 
could be seen in Magnetic Resonance Imaging in early 
IVD degeneration. It has been indicated that 
Schmorl's nodes are the early stage of auto- 
immune response of the degenerated IVD [53]. Also, 
type 1 Modic change, which is widely observed in 
early IVD degeneration, is thought to be an auto- 
immune response with CEP damage [54]. Indeed, 
these image manifestations are strong evidence for 
IVD degeneration prognostication and early manage-
ment [55-57]. Additionally, studies have found that 
inflammatory factors are upregulated in serum from 
IVD herniation patients. Weber et al. found that 
serum levels of IL-6 were significantly higher in 
subjects with LBP compared with control subjects 
[58]. Wang et al. showed that the expression of IL-10 
and IL-17 was elevated in peripheral blood sera of 
IVD degeneration patients [59]. Most recently, Hasvik 
et al. found that up-regulation of circulating 
microRNA-17, which mediates macrophage activetion 
with increased TNF production, is associated with 
lumbar radicular pain following disc herniation [60]. 
Therefore, studies in the IVD auto-immune response 
are essential for early IVD degeneration diagnosis and 
management. 
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Figure 2. Schematic representation for the immune privilege of the intervertebral disc (IVD). A. In normal IVD, the blood-NP barrier (BNB) is composed of the 
annulus fibrosus (AF), the cartilaginous endplate (CEP) and immunosuppressive molecular factors. The BNB isolates the central nucleus pulposus (NP) from the 
immune system of the host and provides fundamental basis for the homeostasis of the IVD. B. The breakdown of the BNB leads to the exposure of the NP and induces 
auto-immune response. This effect causes immunocytes activation and inflammatory factors infiltration, contributing to the immune stress of the nerve root with 
vascularization and neurotization. 

 
 In the late stage of IVD degeneration, patho-

logical changes associated with BNB damage and NP 
exposures are very common. These alternations 
include AF disruption, NP herniation and sciatica 
[61]. Besides physical compression, studies have 
strongly suggested that auto-immune reaction of the 
NP is a key mediator of radicular pain in IVD 
herniation [38, 42]. Studies have showed various types 
of activated immunocytes and inflammatory factors 
were recruited in NP-nerve root area [62, 63]. The 

immunocytes were identified including macrophages, 
T cells, B cells, NK cells and mast cells, and the 
inflammatory factors were detected such as phospho-
lipase A2 [64], leukotrienes [65], fibroblast growth 
factor [66], the IL family [66], tumor necrosis factors 
[67], matrix metalloproteinases [68], nitric oxide [69], 
substance P [70], monocyte chemoattractant protein-1 
[71], vascular endothelial growth factor [72] and nerve 
growth factor [73]. These factors constitute a compli-
cated region contributing to the immune stress of the 
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nerve root. In addition, vascularization and neuro-
tization aggravate this situation with blood channel 
infiltration and nerve sensitization [74]. Therefore, 
strategies aiming for nerve root immunoregulation 
are proposed [75, 76]. In our study, we hypothesized 
that molecular immunotherapy might be a potential 
option in the treatment strategies for IVD degener-
ation and herniation [77].  

While BNB plays an important role in normal 
IVD function, it is notable that not all IVD degenera-
tions are a result of BNB failure. In specific, AF tears 
could lead to abnormal mechanical distribution, NP 
leakage and nerve ingrowth of the IVD. Additionally, 
microfractures in endplates which could be the result 
of single event trauma or part of ageing where the EP 
calcifies and is more prone to microfractures and 
exposing NP tissue to blood supply [78]. 

Until now, it remains a controversial topic as to 
the consequence of auto-immune response of IVD. 
While most studies indicate auto-immune response in 
disc herniation could be a critical factor to induce 
radicular pain, some studies have suggested the close 
relationship of auto-immune response with sponta-
neous regression. Komori et al. found that the dis-
appearance of herniated NP was seen frequently in 
exposure to the vascular supply [79]. By examine the 
histological features of herniated NP tissue; Ikeda rt 
al. concluded that extruded or sequestrated disc was 
resorbed by phagocytes [80]. These studies indicate 
that the auto-immune response could be beneficial in 
some cases with exposed NP absorption. The obser-
vation of spontaneous resorption of IVD herniation 
has been widely reported [81-84] and the incidence of 
spontaneous resorption of lumbar disc herniation is 
reported as high as more than 60% [85]. Moreover, 
by addressing the molecular and cellular mechanisms 
involved in herniated NP regression, Cunha et al. 
concluded that inflammatory response could be 
regarded as a good prognostic indicator of sponta-
neous regression [86]. These studies suggested the 
importance of auto-immune reaction in conservative 
treatment for IVD herniation before final surgical 
involvement. Therefore, it is very important to clarify 
its molecular mechanism. However, the role of 
auto-immune reaction in this phenomenon is still 
unclear. 

As for biological treatment for IVD degeneration, 
the immune privilege of the IVD cannot be ignored in 
stem cell transplantation and biomaterial application. 
In fact, stem cell could play an essential role in 
immune privilege rebuilding via various pathways in 
IVD regeneration [87]. In addition, strategies aiming 
to avoid auto-immune reaction should be considered 
in biomaterial application, as biomaterials used in 

IVD regeneration are often formulated to mimic IVD 
composition, and usually with foreign substance.  

Conclusion 
 The concept of IVD immune privilege arose 

from the apparent segregation from immune system 
of the body. The immune privilege state is one of the 
key factors to provide stable environment keeping 
homeostasis and normal function of the IVD. The BNB 
is accordingly proposed here as a complex structure, 
which is composed of the NP, the AF and molecular 
factors, and limits the penetration of the immune 
system. However, the breakdown of BNB could lead 
to auto-immune reaction of the IVD and downstream 
pathways. These effects play an important role in IVD 
degeneration process including inducement, accelera-
tion and prognosis. Nevertheless, the study of IVD 
immune privilege is still limited and more studies are 
needed to explore the underlying mechanisms for its 
formation, maintenance and breakdown. 
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