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Abstract 

Clear cell renal cell carcinoma (ccRCC) is one of the most commonly diagnosed kidney tumors and is often 
accompanied by immune cell infiltration. In this study, we attempted to identify microenvironment-associated 
genes and explore the correlation between CXCL13 and tumor-infiltrating immune cells (TIICs). Gene 
expression profiles and their corresponding clinical information were downloaded from The Cancer Genome 
Atlas (TCGA) database. The ESTIMATE (Estimation of Stromal and Immune cells in Malignant Tumor tissues 
using Expression data) algorithm was used to calculate immune cell and stromal cell scores, according to which 
patients were divided into high- and low-score groups, allowing differentially expressed genes (DEGs) to be 
identified. Functional enrichment and PPI network analysis were used to identify the functions of the DEGs. 
CIBERSORT algorithm and TIMER analysis were used to evaluate the immune score. Oncomine and TCGA 
database were used to explore CXCL13 mRNA expression level in ccRCC. High ESTIMATE score was 
significantly associated with prognosis. Functional enrichment analysis clarified that DEGs were associated with 
T cell activation, immune response-regulating cell surface receptor signaling pathway, and positive regulation of 
cytokine production. PPI network was used to identify CXCL13 as a hub gene. And CIBERSORT algorithm and 
TIMER analysis showed that strong correlation between CXCL13 expression level and TIICs. Oncomine 
database was used to validate high CXCL13 expression level in ccRCC tissue, compared to normal tissues. In 
conclusion, we obtained a list of tumor microenvironment-related genes and identified CXCL13 as an immune 
response biomarker in patients with ccRCC, GSEA analysis, wound healing and transwell assays showed 
CXCL13 played a role in tumor migration. 
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Introduction 
Renal cell carcinoma (RCC) is the one of the most 

common types of kidney tumor, and remains a major 
global medical problem despite the numerous new 
treatment options available [1]. Among these RCCs, 
the most common subtype is clear cell RCC (ccRCC) 
[2]. Despite the novel, targeted immune drug therapy 
has increased the prognosis of patients, elucidating 
the mechanism of RCC remains vital. Blocking the 
interaction between programmed death-1 (PD-1)/ 
programmed death-ligand 1 (PD-L1) has been shown 
to improve the prognosis of RCC [3], whilst 
promoting T-cell proliferation and survival by using 
high-doses of interleukin-2 has an objective response 
in approximately 10-25 % of patients [4]. These results 
reflect the sensitivity of RCC to immunotherapy. RCC 

is often accompanied by the tumor-infiltrating 
immune cells (TIICs), including macrophages and 
lymphocytes [5]. Infiltration by lymphocytes is an 
immune reaction associated with the elimination of 
cancer cells and thus improved prognosis in most 
cancers, including lung cancer, colorectal cancer, and 
ovarian cancer [6]. However, higher levels of tumor- 
infiltrating lymphocytes usually indicates a poor 
prognosis and reduced survival in RCC [7, 8]. These 
findings suggest that the tumor microenvironment 
plays a crucial role in the occurrence and 
development of RCC. 

The tumor microenvironment consists of 
immune cells, mesenchymal cells, endothelial cells, 
extracellular matrix (ECM) molecules, and 
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inflammatory mediators [9]. Studies have shown that 
the tumor microenvironment affects the gene 
expression of tumor tissues and patient outcome, and 
therefore has a diagnostic and prognostic value for 
tumors [10-13]. Immune and stromal cells make up 
the non-tumor components of the tumor micro-
environment. The ESTIMATE (Estimation of Stromal 
and Immune cells in Malignant Tumor tissues using 
Expression data) algorithm has been developed to 
predict tumor purity using gene expression data [12]. 
By analyzing the specific gene expression signature of 
a tumor, ESTIMATE can calculate immune cell and 
stromal cell scores to predict non-tumor cell 
infiltration. Other specific gene expression signature- 
based algorithms have been shown to be effective 
when applied to colon cancer [14], breast cancer [15], 
prostate cancer [16] and glioblastoma [13]. 
Furthermore, a newly computational algorithm, 
CIBERSORT, was used to enumerate 22 immune cell 
subsets based on 547 key genes, and could reveal the 
several TIICs expression levels in different groups. 

Several prognostic factors are currently available 
for RCC, including tumor staging, lymph node 
involvement, histological subtypes, and Fuhrman 
grading which are gold standard to predict the 
prognosis of RCC. Despite these biomarkers were 
used for early detection or prognosis, we still needed 
another biomarkers to enlarge the prognosis network 
of RCC [17]. The Cancer Genome Atlas (TCGA) has 
been established to map the genome variations of 
human cancers using genomic analysis techniques, 
providing a wealth of clinical and expression profile 
data [18, 19]. In this study, we used the dataset of 
patients with ccRCC from the TCGA database, 
ESTIMATE algorithm to evaluate the effect of non- 
tumor cell infiltration on prognosis, identifying a 
series of microenvironment-related genes, and 
CIBERSORT algorithm to quantify the proportions of 
immune cells. 

In this study, we identified CXCL13 is associated 
with TIICs and prognosis of ccRCC patients. And 
GSEA analysis showed CXCL13 might play an 
important role in tumor migration. 

Materials and Methods 
Database and identification of 
microenvironment-associated genes 

The gene expression profiles and clinical data of 
patients with ccRCC was obtained from the TCGA 
data portal (https://tcga-data.nci.nih.gov/tcga/) and 
the ESTIMATE algorithm was used to calculate 
immune cell and stromal cell scores from the 
downloaded data. Data analysis was performed using 
the R software package, limma [20]. A fold change of 

> 1.5 and false discovery rate (FDR) of < 0.05 were 
used as cutoffs to identify differentially expressed 
genes (DEGs). Volcano plots and heat maps were 
generated using the ggplot2 and pheatmap packages, 
respectively, whilst the Venn diagram package was 
used to identify overlapping genes. 

DEG enrichment analysis and protein-protein 
interaction (PPI) network construction 

Gene ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed using 
DAVID (The Database for Annotation, Visualization 
and Integrated Discovery) [21]. An FDR of < 0.05 was 
used as the cut-off value. The STRING database [22] 
and cytoscape software [23] were used to retrieve and 
reconstruct a PPI network. Important nodes and 
subnetworks were predicted and explored using 
cytohubba, a cytoscape plugin [24], and the top 10 hub 
genes were selected from the results of each method. 

Assessment of immune cell type fractions 
To quantify the proportions of immune cells in 

the ccRCC samples, the analytical tool called 
CIBERSORT and the LM22 gene signature were used 
in this study (https://cibersortx.stanford.edu/). The 
LM22 gene signature contains 547 genes that 
distinguish 22 human hematopoietic cell phenotypes, 
with the analysis conducted with 1,000 permutations 
[25]. These TIICs included B cells (memory and naïve 
B cells), dendritic cells(activated and resting dendritic 
cells), macrophages (M0, M1 and M2 macrophages), 7 
T-cell types (T follicular helper cells, resting memory 
CD4+ T cells, activated memory CD4+ T cells, naïve 
CD4+ T cells, gamma delta T cells, CD8+ T cells and T 
regulatory cells), natural killer cells (resting natural 
killer and activated NK cells), mast cells (resting and 
activated mast cells), monocytes, plasma cells, 
neutrophils and eosinophils. The CIBERSORT values 
generated were defined as immune cell infiltration 
fraction per sample. For each sample, the sum of 22 
evaluated immune cell type fractions equaled 1. 

TIMER Database analysis 
TIMER is a comprehensive resource for 

systematic analysis of immune infiltrates across 
diverse cancer types (https://cistrome.shinyapps.io/ 
timer/) [26]. It applies a deconvolution previously 
published statistical method to infer the abundance of 
TIICs from TCGA cohort, including 10,897 samples 
across 32 cancer types [27]. 

Oncomine Database analysis 
The expression level of CXCL13 in ccRCC was 

identified in the Oncomine database (https://www. 
oncomine.org/resource/login.html) [28]. The 
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threshold was determined according to the following 
values: p value of 0.05, fold change of 2.0. 

Gene set enrichment analysis (GSEA) analysis 
GSEA was used to further understand 

CXCL13-related pathways. The expression level of 
CXCL13 was used as the phenotype annotation and 
ccRCC patients in the TCGA cohort were 
dichotomized into low and high categories. GSEA 
version 3.0 software (www.broadinstitute.org/gsea) 
was used to analyze data. The Molecular Signatures 
Database (MSigDB) of c5 (c5.all.v6.2.symbols.gmt) 
was used to assess the functional differences [29, 30]. 
FDR < 0.01 was used as the cut-off criteria. 

Cell culture and reagents 
All cells were obtained from ATCC. 786-O and 

OS-RC-2 cells were cultured in RPMI-1640 medium 
(Gibco) containing 10% fetal bovine serum (Gibco). 
Recombinant human CXCL13 was purchased from 
PeproTech. 

Wound healing and transwell assay 
 Cell migration was determined by wound 

healing assay. Briefly, CXCL13-treated and control 
cells in 6-well plates were wounded by using sterile 
200 μl pipette tip for 20h. The speed of wound closure 
was determined by Photograph. Meanwhile, 
polycarbonate membrane filters of the chamber were 
used for the transwell assay. 200 μl cells suspension at 
a density of 5×105 cells/ml in serum-free medium 
were seeded into the upper part of the chamber. And 
the lower chamber was filled with 600 μl medium 
containing 10% fetal bovine serum. After 24 h of 
incubation at 37 °C, and the migrated cells adhered to 
the bottom of the upper chamber were fixed in 
methanol and stained with crystal violet, 
photographed and counted via Image J. 

Statistical analysis 
The Statistical Package for Social Science (SPSS 

version 23.0) program was performed in this study. 
To investigate potential risk factors for overall 
mortality, a log-rank test was performed during 
Kaplan-Meier survival analysis. Correlation analysis 
was assessed by using chi-square test and Pearson’s 
correlation coefficient test. The two-tailed p value was 
used in this study, and a p value of <0.05 considered 
statistically significant (* p<0.05, ** p<0.01, *** p<0.001 
and **** p<0.0001). 

Results 
Immune cell and stromal cell scores are 
associated with renal cell carcinoma survival 

In this study, the clinical information and gene 

expression profiles of 530 patients with RCC were 
downloaded from the TCGA database. Of these 
patients, 188 (35.5 %) were females and 342 (64.5 %) 
were males, while 265 (50 %) cases were stage I, 55 
(10.3 %) were stage II, 124 (23.4 %) were stage III, 83 
(15.7 %) were stage IV, and 3 (0.6 %) were of unknown 
stage. The ESTIMATE algorithm was used to calculate 
immune cell and stromal cell scores to predict the 
infiltration of non-tumor cells. Next, we divided the 
patients with RCC into high- and low-score groups 
based on the median immune cell and stromal cell 
scores. The clinicopathologic characteristics of the 530 
patients are shown in Table 1. Kaplan-Meier survival 
analysis revealed that patients with low immune cell 
scores had a higher survival rate than those with high 
immune cell scores (Figure 1A). Similarly, patients 
with lower stromal cell scores had increased overall 
survival (Figure 1B), although there was no 
statistically significant difference. Next, we analyzed 
the relationship between these scores and clinical 
stage, revealing that immune cell scores were higher 
in patients with a higher pathological stage (Figure 
1C). 

Comparison of the gene expression profiles of 
patients with RCC with different immune cell 
and stromal cell scores 

Patients were divided into low- and high- 
immune cell score groups and their gene expression 
profiles were analyzed to identify DEGs with 
corrected P-values < 0.05 and FDRs > 1.5. A total of 
1369 DEGs (988 up-regulated and 381 down- 
regulated) were identified (Figure 2A) and visualized 
using a heatmap (Figure 2B). Using a similar method 
with the stromal cell scores, 1564 DEGs (1061 up- 
regulated and 503 down-regulated) were identified 
(Figure 2C, D). The co-regulated DEGs (377 
co-upregulated and 144 co-downregulated) were 
visualized using Venn diagrams (Figure 2E). 

GO and KEGG pathway enrichment analysis of 
DEGs 

To determine the functions of the 521 DEGs, we 
performed GO enrichment analysis; the top 10 GO 
terms are shown in Figure 3A. DEGs were enriched 
for T cell activation, immune response-regulating cell 
surface receptor signaling pathway, and positive 
regulation of cytokine production in the biological 
process category, the external side of the plasma 
membrane, secretory granule membrane, and 
extracellular matrix in the cellular component 
category, and cytokine activity, cytokine binding, and 
cytokine receptor activity in the molecular function 
category. We also performed KEGG pathway 
enrichment analysis to determine the pathways most 
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enriched for DEGs, which included cytokine-cytokine 
receptor interactions, chemokine signaling pathways, 

and the PI3K-AKT signaling pathway (Figure 3B). 

 

Table 1. Patient characteristics and pathologic features 

  Immune scores P-value StromalScore P-value 
Variables Total patients low high  low high  
Age 60.56± 12.14 60.77± 12.15 60.35±12.14  62.38±11.96 58.75±12.06  

   0.931   0.003 
<60 245 122 123  105 140  
≥60 285 143 142  160 125  
Gender    0.069   0.084 
female 186 103 83  103 83  
male 344 162 182  162 182  
Stage    0.011   0.11 
stage I 265 151 114  132 133  
stage II 56 25 31  37 20  
stage III 123 55 68  59 64  
stage IV 82 32 50  37 45  
unknown 3 1 2  0 3  

 

 
Figure 1. Immune cell and stromal cell scores are associated with renal cell carcinoma (RCC) survival (A) Patients with RCC were divided into two groups based on their 
immune cell scores. As shown in the Kaplan-Meier survival curve, patients with low immune cell scores had a higher overall survival than those with high immune cell scores 
(hazard ratio [HR] 1.372; 95 % CI 1.01–1.864; P = 0.0430 by log-rank test). (B) In a similar manner, patients with RCC were divided into two groups based on their stromal cell 
scores. The Kaplan-Meier survival curve shows no statistically significant difference between the two groups (P = 0.2547 by log-rank test). (C) Immune cell scores were higher 
in patients with a higher pathological stage. (***P < 0.001, by one-way ANOVA followed by Tukey’s multiple-comparison post-hoc test). (D) The stromal cell scores showed no 
statistically significant differences at different pathological stages.  
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Figure 2. Gene expression profile comparison of patients with RCC with different immune cell and stromal cell scores (A-B) The volcano plot and heatmap show the 1369 
genes (988 up-regulated and 381 down-regulated) identified based on the immune cell scores. (C-D) The volcano plot and heatmap show the 1564 genes (1061 up-regulated and 
503 down-regulated) identified based on the stromal cell scores. (E) Venn diagrams show the 377 co-upregulated and 144 co-downregulated genes. 
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Figure 3. Functional enrichment analysis of DEGs (A) Top 10 biological process, cellular component, and molecular function terms for the co-DEGs. (B) KEGG pathways 
enriched for the co-DEGs.  

 

PPI network analysis and identification of 
prognosis-associated genes 

To explore the relationships between the DEGs, 
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database and Cytoscape software were 
used to construct a PPI network for the DEGs (Figure 
4A). The important nodes and subnetworks of the PPI 
were predicted and explored using CytoHubba; the 10 

most significant node genes were ADCY7, GPR55, 
CCR4, GNG8, GNB4, C3, CCL21, CCR7, CCL19, and 
CXCL13. 

Since high levels of immune cell infiltration can 
reduce RCC prognosis, we identified genes affecting 
the prognosis of patients with RCC among top 10 hub 
genes. As shown in Figure 4B-D, CCR4, GNG8 and 
CXCL13 were associated with prognosis of ccRCC 
patients. 
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Figure 4. PPI network analysis and identification of prognosis-associated genes (A) Protein–protein interaction networks of the co-DEGs. (B-D) Kaplan-Meier plotters and 
log-rank tests for the prognostic value of DEGs. (B) CC4, (C) GNG8, (D) CXCL13. 
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The distribution of TIICs in ccRCC according 
to CXCL13 expression level 

ccRCC patients from TCGA was divided into 
low (bottom 10% lowest-expressing CXCL13 samples) 
and high CXCL13 (top 10% highest-expressing 
CXCL13 samples) expression group. The differences 
between 22 subpopulations of TIICs in two groups 
were investigated using the CIBERSORT algorithm. 
We evaluated the average proportion of each immune 
cell type. Figure 5A was shown the details of the 
distribution of TIICs in both groups. There were large 
differences in the composition of TIICs in two groups. 
The results revealed that macrophages M1 cells were 
highly present in high CXCL13 ccRCC tissues, as well 
as plasma cells, CD4+ memory activated T cells, CD8+ 
T cells, follicular helper T cells, gamma delta T cells 
and Tregs (p<0.05). Moreover, the proportion of naïve 
B cells, macrophages M2 cells, resting mast cells, 
monocytes, resting NK cells and CD4+ memory 
resting T cells was higher in low CXCL13 expression 
tissues compared to high CXCL13 expression tissues 
(p<0.05). 

To further determine the correlation between 
CXCL13 and TIICs, ESTIMATE was used to evaluate 
immune score. As shown in Figure 6A, strong 
correlation was found in ESTIMATE score, stromal 
score and immune score (r=0.538, 0.244 and 0.663, 
respectively). TIMER analysis was used to clarify the 
correlation of CXCL13 expression with immune 
infiltration level in ccRCC, and the results revealed 
that CXCL13 expression was significantly negatively 
related to tumor purity and had significant positive 
correlations with infiltrating levels of B cells, CD8+ T 
cells, CD4+ T cells, macrophages, neutrophils, and 
dendritic cells (Figure 6B). Additionally, we analyzed 
the correlation between CXCL13 expression and 
immune marker genes of immune cells (Table 2), and 
we found that the expression levels of most marker 
sets of immune cells are correlated with CXCL13, 
except for M1 macrophage, natural killer cell, Th2 and 
Th17 cells. 

Identification of CXCL13 associated biological 
pathways 

To further evaluate CXCL13 expression in 
various cancers, the differential CXCL13 expression 
between the tumor and normal tissues across all 
TCGA cohorts was shown in Figure 7A. Furthermore, 
CXCL13 expression was significantly higher in ccRCC 
(Figure 7B). Furthermore, CXCL13 was positively 
associated with tumor stage and tumor grade (Figure 
7C-D). Additionally, CXCL13 mRNA levels in ccRCCs 
were analyzed using the Oncomine database. The 

results showed CXCL13 expression was higher in 
tumor tissues, compared to the normal tissues (Figure 
7E-G). 

According to the different CXCL13 expression 
levels, GSEA analysis, a robust computational method 
that determines whether the defined set of genes 
shows statistically significant differences, was used to 
determine biologic characteristics. Immune response 
and cell adhesion were enriched significantly, 
indicating that CXCL13 might play a vital role in these 
biological processes in ccRCC (Figure 7H-I). 

 

Table 2. The association with immune cell markers and CXCL13 
expression level 

Description Gene marker r P 
CD8+ T cell  CD8A 0.5756 **** 
 CD8B 0.5212 **** 
T cell (general) CD3D 0.589 **** 
 CD3E 0.6135 **** 
 CD2 0.6021 **** 
B cell CD19 0.6094 **** 
 CD79A 0.4251 **** 
Monocyte CD86 0.3852 **** 
 CD115 (CSF1R) 0.3022 **** 
M1 Macrophage INOS (NOS2) -0.06597 ns 
 COX2(PTGS2) -0.0151 ns 
M2 Macrophage CD163 0.2232 **** 
 VSIG4 0.3423 **** 
 MS4A4A 0.3002 **** 
Neutrophils CD66b (CEACAM8) 0.008424 ns 
 CD11b (ITGAM) 0.04541 ns 
Natural killer cell KIR2DL1 -0.03222 ns 
 KIR2DL3 0.05152 ns 
 KIR2DL4 0.3342 ns 
 KIR3DL1 -0.0444 ns 
 KIR3DL2 0.0731 ns 
 KIR3DL3 0.05221 ns 
Dendritic cell HLA-DPB1 0.2912 **** 
 HLA-DQB1 0.2099 **** 
 HLA-DRA 0.2839 **** 
 HLA-DPA1 0.2647 **** 
Th1 T-bet (TBX21) 0.4259 **** 
 STAT4 0.4852 **** 
 STAT1 0.4578 **** 
 IFN-γ (IFNG) 0.6612 **** 
Th2 GATA3 0.0744 ns 
 STAT6 -0.05662 ns 
 IL13 0.1663 *** 
Tfh BCL6 0.05778 ns 
 IL21 0.4444 **** 
Th17 STAT3 0.02595 ns 
 IL17A 0.01578 ns 
Treg FOXP3 0.5057 **** 
 CCR8 0.383 **** 
 TGFβ (TGFB1) 0.2035 **** 
T cell exhaustion PD-1 (PDCD1) 0.6266 **** 
 CTLA4 0.6144 **** 
 LAG3 0.6436 **** 
 GZMB 0.5386 **** 
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Figure 5. The landscape of immune infiltration in ccRCC (A) The difference of immune infiltration between top 10% highest-expressing and bottom 10% lowest-expressing 
CXCL13 samples. (B) The quantified contrast of the distribution of TIIC subtypes between top 10% highest-expressing and bottom 10% lowest-expressing CXCL13 samples *p 
< 0.05; **p < 0.01, ***p<0.001. 
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Figure 6. Correlation of CXCL13 expression with immune infiltration level in ccRCC. (A) The correlation of CXCL13 with ESTIMATE score, stromal score and immune score. 
(B) CXCL13 expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells. 
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Figure 7. CXCL13 expression levels in ccRCC (A) Human CXCL13 expression levels in different types of tumor from TCGA database were determined by TIMER analysis. (B) 
CXCL13 expression level between non-tumor tissues and tumor tissues from ccRCC. (C) CXCL13 expression level among different tumor stages. (D) CXCL13 expression level 
among different tumor grades. (E-G) CXCL13 mRNA expression level in Oncomine database. (H-I) GSEA plot showed CXCL13 expression associated with immune response 
and cell adhesion processes *p < 0.05; **p < 0.01, ***p<0.001. 



Int. J. Med. Sci. 2020, Vol. 17 

 
http://www.medsci.org 

1621 

 
Figure 8. CXCL13 promote the migration ability of RCC. (A-D) The wound healing assays were used to examine the relative migration ability of CXCL13. Wound closure was 
observed after 20h. The normalized wound area of control cells at 0 h was set as 1. (E-F) Migration of 786-O and OS-RC-2 cells were measured by the transwell migration assay. 
Transwell assay was observed after 24h **p < 0.01, ***p<0.001. 

 

CXCL13 promotes migration ability in renal 
cell lines 

 To identify the effects of CXCL13 on the motility 
of RCC, wound healing assays were performed in 
786-O and OS-RC-2 cells. The results showed that 
treatment with CXCL13 (50 ng/ml) significant 
increased the speed of wound closure in both cell lines 
(Figure 8A-D). Transwell assay showed a great 
increased migrating cells in CXCL13 treated cells (50 
ng/ml), compared to control cells (Figure 8E-F). 
Taken together, these results indicated that CXCL13 

significantly promoted the migration ability of RCC. 

Discussion 
TCGA is an open access database which uses a 

genome-wide approach to reveal the genetic 
characteristics of cancers. Many studies of cancers 
such as RCC have screened diagnostic and prognostic 
biomarkers using TCGA [31, 32]. Previous studies 
have shown that intrinsic tumor genes can cause 
changes in the tumor microenvironment [33, 34], 
which affect the occurrence and development of 
tumors, tumor progression, drug resistance, and 



Int. J. Med. Sci. 2020, Vol. 17 

 
http://www.medsci.org 

1622 

overall prognosis [35-37]. The RCC tumor 
microenvironment is unlike that of other tumor types 
[38]; in most cancers, increased CD8+ T cell density is 
associated with improved prognosis [6], yet in RCC 
increased CD8+ T cell density is often associated with 
a worse outcome [39]. A previous study which 
performed clustering analyses on the infiltrating 
immune cells in RCC, revealed a total of 17 
macrophage and 22 T cell subsets [40]. Therefore, the 
tumor immune microenvironment appears to play an 
important role in the occurrence and development of 
RCC. 

In this study, we calculated immune cell and 
stromal cell scores using the ESTIMATE algorithm, 
finding that patients with a high immune cell score 
were likely to have a poor prognosis. Next, we 
identified 521 co-DEGs by comparing the gene 
expression of patients with high immune cell and 
stromal cell scores against those with low immune cell 
and stromal cell scores. GO term analysis revealed 
that the co-DEGs functions mainly involved the tumor 
microenvironment, such as T cell activation, immune 
response-regulating cell surface receptor signaling 
pathway, positive regulation of cytokine production, 
and cytokine activity. KEGG pathway enrichment 
analysis showed that the DEGs were enriched in 
cytokine-cytokine receptor interactions and the 
chemokine signaling pathway. Functional enrichment 
analysis confirmed that these DEGs were closely 
related to the RCC microenvironment. Next, we 
performed PPI network analysis and found 10 
microenvironment-associated hub genes, including 
GPR55, CCR4, C3, CCL21, CCR7, CCL19, and 
CXCL13, which have been reported to promote 
proliferation, angiogenesis, migration, and 
invasiveness by altering the tumor microenvironment 
[41-44], and identified CCR4, GNG8 and CXCL13 
were associated with prognosis of ccRCC patients. 
Furthermore, we evaluated the correlation between 
TIICs and CXCL13 and CXCL13 mRNA expression in 
ccRCC. GESA analysis enriched immune response 
and cell adhesion pathway, indicating that CXCL13 
had potential role in tumor migration. 

Chemokines are a family of chemotactic 
cytokines or ligands, which were related to direct 
migration of immune cells and tumor cells [45, 46]. 
CXCL13, and its receptor, CXCR5 (CXCL13/CXCR5 
axis), serve as an important pathway of tumor 
proliferation and metastasis [47-49]. Previous studies 
demonstrated that CXCL13 upregulation was 
regarded as a biomarker for poor prognosis in various 
cancers, including ccRCC [50-52]. Since high immune 
cell and stromal cell scores are associated with poor 
prognosis of ccRCC patients, we identified tumor 
microenvironment-associated genes that correlated 

with the prognosis of patients with ccRCC. We 
identified CXCL13 was associated with TIICs and 
enhanced the effect of migration. 

Cancer cells are usually recognized by immune 
system, including innate and adaptive immunity. 
And the immune surveillance is driven by a network 
of mediators, such as cytokines and chemokines, et al 
[53]. On one hand, chemokines regulate tumor 
microenvironment and initiation of antitumor 
immune response. On the other hand, chemokines 
could recruit immune-suppressive regulators and 
immunoinhibitory mediators to make immune 
escape. This means CXCL13 could act as a tumor- 
specific biomarker. 

Previous studies had demonstrated that CXCL13 
was associated with epithelial-to-mesenchymal 
transition (EMT) and could activate CXCR5/ERK 
pathway in breast cancer [48, 49]. EMT is an important 
way highly associated with cell adhesion. 
Dysregulation of cell adhesion was associated with 
cancer progression and metastasis through promoting 
the motility of tumor cells and migration into adjacent 
tissues or invade vascular to distinct organs. 
Consistent with our results, CXCL13 expression level 
was positively correlated with immune response and 
cell adhesion by GSEA analysis. Wound healing and 
transwell assays showed CXCL13 promoted the 
migration ability in RCC. 

However, there were several limitations in this 
study. First, the results analysis from TCGA have not 
detected in GEO database. Second, the detailed 
functions and potential mechanisms of CXCL13 in 
ccRCC are needed to be validated in vitro and in vivo 
experiment, which would be conducted in our further 
studies. 

Conclusions 
In summary, we produced a list of tumor 

microenvironment-related genes and identified 
CXCL13 expression level correlated with poor 
prognosis and increased TIICs of ccRCC. Therefore, 
CXCL13 likely plays an important role in immune cell 
infiltration, acts as a prognosis biomarker in patients 
with ccRCC and has potential role in tumor 
migration. However, our findings need to be 
validated in future studies. 
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