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Abstract 

Background: Multiple myeloma (MM) is the second most common hematological malignancy, which is still 
incurable and relapses inevitably, highlighting further understanding of the possible mechanisms. Side 
population (SP) cells are a group of enriched progenitor cells showing stem-like phenotypes with a distinct 
low-staining pattern with Hoechst 33342. Compared to main population (MP) cells, the underlying molecular 
characteristics of SP cells remain largely unclear. This bioinformatics analysis aimed to identify key genes and 
pathways in myeloma SP cells to provide novel biomarkers, predict MM prognosis and advance potential 
therapeutic targets. 
Methods: The gene expression profile GSE109651 was obtained from Gene Expression Omnibus database, 
and then differentially expressed genes (DEGs) with P-value <0.05 and |log2 fold-change (FC)| > 2 were 
selected by the comparison of myeloma light-chain (LC) restricted SP (LC/SP) cells and MP CD138+ cells. 
Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment analysis, protein-protein interaction (PPI) network analysis were performed to identify the 
functional enrichment analysis of the DEGs and screen hub genes. Cox proportional hazards regression was 
used to select the potential prognostic DEGs in training dataset (GSE2658). The prognostic value of the 
potential prognostic genes was evaluated by Kaplan-Meier curve and validated in another external dataset 
(MMRF-CoMMpass cohort from TCGA). 
Results: Altogether, 403 up-regulated and 393 down-regulated DEGs were identified. GO analysis showed 
that the up-regulated DEGs were significantly enriched in innate immune response, inflammatory response, 
plasma membrane and integral component of membrane, while the down-regulated DEGs were mainly 
involved in protoporphyrinogen IX and heme biosynthetic process, hemoglobin complex and erythrocyte 
differentiation. KEGG pathway analysis suggested that the DEGs were significantly enriched in osteoclast 
differentiation, porphyrin and chlorophyll metabolism and cytokine-cytokine receptor interaction. The top 10 
hub genes, identified by the plug-in cytoHubba of the Cytoscape software using maximal clique centrality (MCC) 
algorithm, were ITGAM, MMP9, ITGB2, FPR2, C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. Modules and 
corresponding GO enrichment analysis indicated that myeloma LC/SP cells were significantly associated with 
immune system, immune response and cell cycle. The predictive value of the prognostic model including TFF3, 
EPDR1, MACROD1, ARHGEF12, AMMECR1, NFATC2, HES6, PLEK2 and SNCA was identified, and validated 
in another external dataset (MMRF-CoMMpass cohort from TCGA). 
Conclusions: In conclusion, this study provides reliable molecular biomarkers for screening, prognosis, as 
well as novel therapeutic targets for myeloma LC/SP cells. 
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Introduction 
Multiple myeloma (MM) is a B-cell malignancy 

characterized by the aberrant expansion of clonal 
plasma cells within bone marrow, which is the second 
most common hematological malignancy [1]. Despite 
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remarkable progress of biology and recent 
development of novel therapy [2, 3], MM continues to 
remain incurable due to the emergence of drug 
resistance and frequent relapses, highlighting the 
further understanding of the possible mechanisms. 

Cancer stem cells (CSCs) are thought to have the 
distinctive properties of constituting a small fraction 
of tumor cells with self-renewal capacity and be able 
to propagate the disease [4, 5]. Besides, CSCs are 
considered to be more resistant to chemo- and radio- 
therapy and have better DNA repair mechanisms and 
increased anti-apoptotic activity, just like hemato-
poietic stem cells [6]. Previously, CSCs have been 
identified in MM [7] by the evidence that the 
CD138-/CD19+ fraction of MM has a greater 
clonogenic potential and the phenotype of a memory 
B-cell (CD19+, CD27+), resulting in the development of 
refractory clones and disease relapse[8]. Then, it has 
been defined that possible stem cell populations 
include light-chain restricted cells with a CD138–

/CD19+/CD27+ phenotype [7, 9, 10], CD138+/CD34+/ 
B7–H1+ subpopulations [11] and CD38++/CD45– 

plasma cells [12, 13]. Despite these phenotypes have 
been described, the distinct CSCs marker in MM is 
still controversial. 

Side population (SP) cells, first described by 
Goodell et al. [14], are a group of enriched progenitor 
cells showing stem-like phenotypes and a distinct 
low-staining pattern with Hoechst 33342, and have 
been widely used as a unique source for studying 
CSCs in the absence of specific markers [4, 15-21]. 
Although lots of previous studies have explored the 
stem-like properties and tumorigenicity of myeloma 
SP cells, a better understanding of SP cells still 
remains largely unclear [10, 22-25]. Thus, it is vital to 
elucidate the key molecular characteristics expressed 
within myeloma SP cells. 

It is generally known that gene expression 
profiling analysis based on microarray technology 
enables the possibilities for identifying certain 
disease-related biomarkers. Recently, many studies 
have been carried out on the base of microarray data 
profiles to identify the pathogenesis of MM [26-28]. 
Nevertheless, the key molecular characteristics of 
myeloma SP cells in comparison to MP cells have not 
yet been explored. This bioinformatics analysis was 
performed to elucidate key candidate genes and 
pathways in myeloma SP cells, provide novel 
biomarkers, predict MM prognosis and advance 
potential therapeutic targets. 

In this study, we downloaded microarray 
dataset GSE109651 (Zhan et al., 2018) from Gene 
Expression Omnibus database (https://www.ncbi. 
nlm.nih.gov/geo/), which is a public functional 
genomics data repository with array- and sequence- 

based data. By comparing myeloma light-chain (LC) 
restricted SP (LC/SP) cells with myeloma MP cells 
based on R software and Bioconductor, differentially 
expressed genes (DEGs) were identified. Gene 
Ontology (GO) analysis, Kyoto encyclopedia of genes 
and genomes (KEGG) pathway analysis and 
protein-protein interaction (PPI) network analysis 
were performed to identify the functional enrichment 
analysis of the DEGs and screen hub genes. 
Subsequently, we constructed a prognostic model to 
predict survivals of MM patients. This study provides 
reliable molecular biomarkers for screening, 
prognosis, as well as novel therapeutic targets for 
LC/SP cells of MM. 

Materials & Methods 
Microarray data profile 

The gene expression dataset GSE109651 was 
obtained from GEO database. The microarray data of 
GSE109651, based on the GPL570 platform ([HG- 
U133_Plus_2] Affymetrix Human Genome U133A 
Plus 2.0 Array) and normalized using the MAS5 
algorithm of the Affymetrix expression console 
version1.1 software (Affymetrix), includes 7-paired 
LC/SP cells and MP CD138+ cells of myeloma bone 
marrow from 7 diagnosed MM patients isolated by 
fluorescence-activated cell sorting (FACS) using 
Hoechst 33342 and CD138 antibody. To perform 
survival analysis, GSE2658 dataset of 559 MM patients 
and TCGA MM RNA sequencing dataset (MMRF- 
CoMMpass) of 787 cases with MM including 
clinicopathological information were downloaded 
from GEO database and TCGA (https://tcga-data. 
nci.nih.gov/) databases, respectively. For the retro-
spective cohort, the patients’ characteristics were 
estimated by Pearson test χ2 or Fisher’s exact test, 
indicating no significant statistical difference. 

Data processing and identification of DEGs of 
GSE109651 

Firstly, we detected the quality of raw data by R 
statistical software (version 3.6.3, https://www.r- 
project.org/), including a quality control overview 
diagram based on the “simpleaffy” package, weights 
and residuals plot, relative log expression (RLE) 
boxplot and normalized unscaled standard errors 
(NUSE) box plot based on the "affyPLM" and 
"RColorBrewer" packages, RNA degradation curve 
based on the "affy" package and clustering analysis 
diagram based on the "gcrma", "graph" and 
"affycoretools" packages. 

Then, DEGs between LC/SP cells and MP 
CD138+ cells of MM were identified by an empirical 
Bayes method based on the “limma” package in R. 
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The process included six main steps: construction of a 
gene expression matrix, construction of an 
experimental design matrix, construction of a contrast 
matrix, fitting of a linear model, Bayes test, and 
generation of results. In this study, genes with P-value 
< 0.05 and |log2 fold-change (FC)| > 2 were defined 
as DEGs. 

GO and KEGG pathway enrichment analysis of 
DEGs 

To explore the functional roles of the above 
DEGs, DAVID database (https://david.ncifcrf.gov/) 
was used to perform GO term enrichment analysis of 
molecular function (MF), biological process (BP), and 
cellular component (CC) and KEGG pathway 
enrichment analysis. P-value < 0.05 was considered as 
the cut-off criterion. 

PPI network construction and modular 
analysis 

Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://www.string-db.org/) was 
used to construct the PPI network. The visualization 
and analysis of the PPI network were based on 
Cytoscape software version 3.7.2. Then, the plug-ins 
Molecular Complex Detection (MCODE) and 
Biological Network Gene Ontology tool (BiNGO) in 
Cytoscape software were used to screen significant 
modules of the PPI network (the parameters were set 
to default) and perform GO analysis that the module 
genes were significantly enriched in. 

Identification of hub genes 
The plug-in cytoHubba in Cytoscape was used to 

identify key (hub) genes among the above DEGs by 
maximal clique centrality (MCC) computing method. 
The hub genes were selected to discuss their function 
and effect on myeloma LC/SP cells. 

Survival analysis 
DEGs significantly associated with myeloma- 

specific survival in the training dataset (GSE2658) 
were identified using univariate Cox proportional 
hazards analysis with P-value < 0.01 by “survival” 
package [29]. Then, the final genes significantly 
correlated with survival at a P-value of less than 0.05 
were identified by multivariate Cox proportional 
hazards analysis. Subsequently, the risk score on the 
base of the aforementioned candidate genes and 
survival information was calculated as follows: Risk 
score = ∑β i × ExpGene i (β i was the coefficient value 
and ExpGene i was the gene expression level). 
According to the median risk score, the cohort was 
dichotomized into low-risk and high-risk group, then 
survival time was compared by the Kaplan–Meier 
analysis and the log-rank test with a P-value of less 

than 0.01. Another external dataset (MMRF- 
CoMMpass cohort) was used to assess the prognostic 
value through a process similar to the training 
dataset. 

Results 
Identification of DEGs 

The gene expression dataset GSE109651 included 
7-paired LC/SP cells samples and MP CD138+ cells 
samples of myeloma bone marrow. On the basis of 
cut-off criterion of DEGs described previously, there 
were 796 DEGs in LC/SP cells compared with MP 
CD138+ cells of myeloma bone marrow, among which 
393 DEGs were significantly down-regulated and 403 
DGEs were significantly up-regulated. The volcano 
plot of DEGs was shown in Figure 1. The expression 
heat map of the top 100 DEGs (including 52 
significantly down-regulated genes and 48 
significantly up-regulated genes) was depicted in 
Figure 2, which could effectively distinguish LC/SP 
cells from MP CD138+ cells and might function as 
biomarker and target of MM. The detailed 
information of the top 10 DEGs was shown in Table 1. 

GO term enrichment analysis of DEGs 
To explore the functional roles of the DEGs, we 

performed GO enrichment analysis of up-regulated 
and down-regulated DEGs by using DAVID gene 
annotation tool. It turned out that obvious differences 
were enriched in BPs, MFs and CCs among the 796 
DEGs. For BPs, the up-regulated DEGs were 
primarily enriched in immune response, including 
innate, adaptive immune response and T cell 
differentiation involved in immune response, 
suggesting that these DEGs could significantly 
associate with the immune system of myeloma LC/SP 
cells. Besides, these genes were also significantly 
enriched in inflammatory response, leukotriene 
metabolic process and neutrophil chemotaxis. The 
down-regulated DEGs were significantly enriched in 
protoporphyrinogen IX biosynthetic process, heme 
biosynthetic process and erythrocyte differentiation, 
indicating that the down-regulated DEGs may be 
relevant to the development and differentiation of 
erythrocytes. In the CCs group, the up-regulated 
DEGs were significantly involved in plasma 
membrane, integral component of membrane and 
extracellular space. In addition, down-regulated 
genes were largely enriched in the extracellular 
exosome and hemoglobin complex. Regarding MFs 
category, the up-regulated genes were mainly 
enriched in the binding of carbohydrate, calcium ion 
and arachidonic acid. Moreover, the most 
significantly enriched GO terms for down-regulated 
genes were immunoglobulin receptor binding, 
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oxygen transporter activity and NAD activity. GO 
enrichment analysis results were displayed in Figure 
3 and Table 2. 

KEGG pathway enrichment analysis of DEGs 
According to the KEGG pathway enrichment 

analysis of up- and down-regulated DEGs, the up- 
regulated DEGs were mainly enriched in osteoclast 
differentiation, cytokine-cytokine receptor interaction, 
Staphylococcus aureus infection, leukocyte 
transendothelial migration and cell adhesion 
molecules. Furthermore, enrichment of down- 
regulated DEGs was mostly in the porphyrin and 
chlorophyll metabolism, hematopoietic cell lineage 
and metabolic pathways. KEGG analysis results were 
displayed in Figure 4 and Figure 5, and the detailed 
analysis results of the top 5 pathways were shown in 
Table 3. 

PPI network construction and modular 
analysis 

On the base of STRING online database and 
Cytoscape software, we established a PPI network of 
these DEGs in myeloma LC/SP cells, with 610 nodes 
and 2922 edges identified, including 288 up-regulated 
and 322 down-regulated genes. Then, PPI module 
analysis was implemented by plug-ins MCODE in 
Cytoscape, and three significant modules were 

identified from the whole network. The top 3 modules 
with high scores were selected for display: module 1 
contained 53 nodes and 684 edges (Figure 6A), 
module 2 contained 21 nodes and 197 edges (Figure 
6B) and module 3 contained 13 nodes and 60 edges 
(Figure 6C). Subsequently, corresponding GO term 
enrichment analysis was performed by plug-ins 
BiNGO in Cytoscape. Genes in Module 1 were 
significantly enriched in the defense response, 
immune system process and immune response. 
Moreover, genes in Module 2 were mainly enriched in 
cell cycle phase, cell cycle and M phase of mitotic cell 
cycle. Additionally, genes in module 3 were primarily 
enriched in G-protein coupled receptor protein, 
signaling pathway and chemotaxis. The detailed 
information of the top 3 modules was shown in Table 
4. 

Selection of hub genes from the PPI network 
Among the previously described DEGs, 

significant hub genes were identified by plug-in 
cytoHubba of Cytoscape using MCC algorithm. The 
top 10 hub genes were ITGAM, MMP9, ITGB2, FPR2, 
C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. The 
top 10 hub genes and their most relevant functions 
were displayed in Table 5. 

 

 
Figure 1. Volcano plot of DEGs (393 down-regulated genes and 403 up-regulated genes). 
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Figure 2. Heat map of the top 100 DEGs (52 down-regulated genes and 48 up-regulated genes). 

 

Table 1. Detailed information on the top 10 DEGs in the analysis 

Symbol Name AveExpr t P-Value adj.P-Val B logFC 
SLC27A5 solute carrier family 27 member 5 6.641 -9.704 7.23E-08 1.46E-03 7.969 -2.685 
MARCHF11 membrane associated ring-CH-type finger 11 4.541 7.686 1.38E-06 1.16E-02 5.451 3.293 
RBFA ribosome binding factor A 6.812 -7.379 2.26E-06 1.16E-02 5.015 -3.401 
GFI1B growth factor independent 1B transcriptional repressor 6.468 -6.874 5.21E-06 1.16E-02 4.267 -4.616 
ECI2 enoyl-CoA delta isomerase 2 9.317 -6.799 5.91E-06 1.16E-02 4.152 -3.099 
SNRK-AS1 SNRK antisense RNA 1 7.699 6.755 6.38E-06 1.16E-02 4.084 2.448 
PTK2 protein tyrosine kinase 2 6.761 -6.680 7.25E-06 1.16E-02 3.968 -3.842 
RPS6KL1 ribosomal protein S6 kinase like 1 6.489 -6.673 7.34E-06 1.16E-02 3.957 -2.658 
LRRC45 leucine rich repeat containing 45 6.612 -6.639 7.78E-06 1.16E-02 3.903 -2.562 
KBTBD7 kelch repeat and BTB domain containing 7 10.589 6.635 7.83E-06 1.16E-02 3.898 2.122 
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Table 2: Gene Ontology term enrichment analysis of DEGs in LC/SP cells of MM. 

Expression Category ID Term Count PValue 
 BP GO:0045087 innate immune response 28 3.13E-09 
 BP GO:0006954 inflammatory response 25 2.07E-08 
 BP GO:0006955 immune response 20 8.02E-05 
 BP GO:0006691 leukotriene metabolic process 5 8.69E-05 
 BP GO:0030593 neutrophil chemotaxis 8 1.07E-04 
 CC GO:0005886 plasma membrane 122 1.23E-11 
 CC GO:0016021 integral component of membrane 131 5.17E-08 
UP-DEGs CC GO:0005615 extracellular space 48 1.22E-06 
 CC GO:0042581 specific granule 6 1.47E-06 
 CC GO:0005887 integral component of plasma membrane 46 2.27E-05 
 MF GO:0030246 carbohydrate binding 12 4.29E-04 
 MF GO:0005509 calcium ion binding 24 1.91E-03 
 MF GO:0050544 arachidonic acid binding 3 2.63E-03 
 MF GO:0004198 calcium-dependent cysteine-type endopeptidase activity 4 4.76E-03 
 MF GO:0005536 glucose binding 3 1.36E-02 
 BP GO:0006782 protoporphyrinogen IX biosynthetic process 5 1.81E-05 
 BP GO:0006783 heme biosynthetic process 6 4.80E-05 
 BP GO:0030218 erythrocyte differentiation 7 1.31E-04 
 BP GO:0006779 porphyrin-containing compound biosynthetic process 4 4.09E-04 
 BP GO:0008283 cell proliferation 19 4.20E-04 
 CC GO:0070062 extracellular exosome 84 2.77E-05 
 CC GO:0005833 hemoglobin complex 5 5.86E-05 
DOWN-DEGs CC GO:0014731 spectrin-associated cytoskeleton 4 3.66E-04 
 CC GO:0015629 actin cytoskeleton 13 1.08E-03 
 CC GO:0005739 mitochondrion 42 1.84E-03 
 MF GO:0034987 immunoglobulin receptor binding 5 1.51E-03 
 MF GO:0005344 oxygen transporter activity 4 2.28E-03 
 MF GO:0004029 aldehyde dehydrogenase (NAD) activity 4 4.07E-03 
 MF GO:0051015 actin filament binding 9 4.36E-03 
 MF GO:0004064 arylesterase activity 3 5.39E-03 

 
 

 
Figure 3. Bubble plots of GO enrichment analysis of DEGs. (A) Bubble plot of GO enrichment analysis of up-regulated DEGs. (B) Bubble plot of GO enrichment analysis of 
down-regulated DEGs. 

 

Survival analysis of DEGs 
The result of univariate Cox analysis showed 

76 survival related genes (Table S1; 19 up-regulated 
and 57 down-regulated) (P-value < 0.01). 

Afterwards, the 76 genes were fitted into the 
multivariate Cox proportional hazards analysis, 
and 9 genes including TFF3, EPDR1, MACROD1, 
ARHGEF12, AMMECR1, NFATC2, HES6, PLEK2 
and SNCA were identified with P-value < 0.05 
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(Table 6). The prognostic models of training and 
validation dataset containing 9 genes were 
constructed by discriminating the low-risk group 
from the high-risk group based on the respective 

median risk score. Kaplan-Meier curve showed that 
high-risk group had worse survival compared to 
the low-risk group in both training and validation 
dataset (Figure 7). 

 

 
Figure 4. KEGG pathway analysis of DEGs. 

 

Table 3. KEGG pathway enrichment analysis of DEGs in LC/SP cells of MM 

Expression Category Term Count P-Value 
 hsa04380 Osteoclast differentiation 11 1.50E-04 
 hsa04060 Cytokine-cytokine receptor interaction 14 5.51E-04 
UP-DEGs hsa05150 Staphylococcus aureus infection 6 3.15E-03 
 hsa04670 Leukocyte transendothelial migration 8 5.44E-03 
 hsa04514 Cell adhesion molecules (CAMs) 8 1.64E-02 
 hsa00860 Porphyrin and chlorophyll metabolism 7 1.63E-04 
 hsa04640 Hematopoietic cell lineage 8 1.65E-03 
DOWN-DEGs hsa01100 Metabolic pathways 39 2.24E-03 
 hsa01130 Biosynthesis of antibiotics 12 3.24E-03 
 hsa04110 Cell cycle 8 1.16E-02 

 

Table 4. The top 5 significantly enriched GO terms and corresponding gene information in module analysis 

Modules GO-ID P-value corr P-value x Description Genes in test set 
 6952 2.31E-16 2.51E-13 20 defense response ORM1|CRISP3|ITGB2|HP|CYBB|RAB27A|CXCL1|FPR2|LILRB2|PLD1|CFP| 

CLEC4D|CLEC5A|C3AR1|LCN2|OLR1|PTX3|PGLYRP1|CAMP|LTF 
 2376 6.99E-13 3.80E-10 20 immune system process ITGAM|ARG1|CRISP3|ITGB2|CYBB|RAB27A|CXCL1|LILRB2|CFP|MMP9| 

FCAR|CHIT1|BST1|CLEC4D|C3AR1|LCN2|PTX3|CEACAM8|PGLYRP1|LTF 
module 1 6955 1.24E-11 4.49E-09 16 immune response ARG1|CRISP3|CYBB|RAB27A|CXCL1|LILRB2|CFP|FCAR|CHIT1|BST1| 

CLEC4D|LCN2|PTX3|CEACAM8|PGLYRP1|LTF 
 5576 3.52E-10 9.56E-08 24 extracellular region ORM1|ARG1|CRISP3|HP|CXCL1|RETN|OLFM4|MMP8|CFP|MMP9|FCAR| 

CHIT1|TCN1|CEACAM1|SLPI|LCN2|OLR1|CHI3L1|PTX3|CEACAM8|FOLR3| 
PGLYRP1|CAMP|LTF 

 30246 6.48E-09 1.38E-06 11 carbohydrate binding CHIT1|ITGAM|CLEC4D|CLEC12A|ARG1|CLEC5A|OLR1|CHI3L1|PTX3| 
PGLYRP1|LTF 

 22403 2.21E-18 1.13E-15 14 cell cycle phase PLK1|CDCA8|CDC25C|NDC80|CDC20|CCNB2|ASPM|KIFC1|CDK1|PBK| 
RAD54L|OIP5|DLGAP5|CDKN3 

 7049 3.54E-18 1.13E-15 16 cell cycle PLK1|HJURP|CDCA8|CDC25C|NDC80|CDC20|CCNB2|ASPM|KIFC1|CDK1| 
PBK|RAD54L|OIP5|DLGAP5|CDKN3|E2F8 

module 2 87 6.92E-18 1.48E-15 12 M phase of mitotic cell cycle CDC20|CCNB2|ASPM|KIFC1|PLK1|CDK1|PBK|CDCA8|OIP5|CDC25C| 
NDC80|DLGAP5 

 279 9.72E-18 1.56E-15 13 M phase PLK1|CDCA8|CDC25C|NDC80|CDC20|CCNB2|ASPM|KIFC1|CDK1|PBK| 
RAD54L|OIP5|DLGAP5 

 278 2.74E-17 3.51E-15 13 mitotic cell cycle PLK1|CDCA8|CDC25C|NDC80|CDC20|CCNB2|ASPM|KIFC1|CDK1|PBK| 
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OIP5|DLGAP5|CDKN3 
 7186 1.94E-08 8.23E-06 7 G-protein coupled receptor 

protein signaling pathway 
CXCL12|CXCR1|CXCR2|PNOC|NMU|ADCY4|APLNR 

 42330 8.82E-08 1.25E-05 5 taxis CXCL6|CXCL12|CXCR1|CCL5|CXCR2 
module 3 6935 8.82E-08 1.25E-05 5 chemotaxis CXCL6|CXCL12|CXCR1|CCL5|CXCR2 
 7610 4.59E-07 4.18E-05 6 behavior CXCL6|CXCL12|CXCR1|CCL5|CXCR2|NMU 
 4918 4.93E-07 4.18E-05 2 interleukin-8 receptor activity CXCR1|CXCR2 

 

Table 5. The top 10 hub genes and their most relevant functions 

Symbol Gene name Degree Relevant function Reference 
ITGAM integrin subunit alpha M 78 A poor prognostic factor in MM and AML patients; [57-61] 
MMP9 Matrix metallopeptidase 9 64 Participates in the breakdown of extracellular matrix; Promotes invasion of MM; [73, 79-84] 
ITGB2 Integrin subunit beta 2 62 Involved in cell adhesion and cell-surface mediated signaling; 

Associated with drug resistance to chemotherapy in MM cell line; 
[63, 66] 
 

FPR2 Formyl-peptide receptor-2 52 Associated with invasion and metastasis of some cancers; [96-98] 
C3AR1 complement C3a receptor 1 51 Involved in drug resistance to chemotherapy in AML cell;  

Predicts overall survival of AML; 
[99] 
 

CXCL1 C-X-C motif chemokine ligand 1 51 Associated with the growth and progression of some cancers; [100-102] 
CYBB cytochrome b-245 beta chain 48 Involved in the progression of some cancers by promotion of angiogenesis; [103, 104] 
LILRB2 leukocyte immunoglobulin like receptor B2 46 Inhibits stimulation of an immune response; Promotes tumor progression; [105-107] 
HP haptoglobin 44 NA - 
FCER1G Fc fragment of IgE receptor Ig 43 Associated with disease progression in lymphoma and some solid cancers; 

Deficient expression represents T-cell immunodeficiency in CLL. 
[108-110] 

 

 
Figure 5. Distribution of DEGs in myeloma LC/SP cells for the top 5 KEGG enriched pathways. 
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Figure 6. The top 3 modules with relatively high scores from the protein-protein interaction network. Red: up-regulation; Blue: down-regulation. (A) Module 1 with 53 nodes 
and 684 edges was significantly enriched in defense response, immune system process and immune response. (B) Module 2 with 21 nodes and 197 edges was significantly enriched 
in cell cycle phase, cell cycle and M phase of mitotic cell cycle. (C) Module 3 with 13 nodes and 60 edges was significantly enriched in G-protein coupled receptor protein, signaling 
pathway and chemotaxis. 

 
Figure 7. Kaplan–Meier survival analysis of 9 prognostic genes in MM patients in the training and validation datasets. (P-value < 0.0001 in both GSE2658 and MMRF-COMMPASS). 
(A) Kaplan–Meier survival analysis of 9 prognostic genes in MM patients in GSE2658. (B) Kaplan–Meier survival analysis of 9 prognostic genes in MM patients in 
MMRF-COMMPASS. 

 

Discussion 
In the present study, we performed a 

bioinformatics analysis to identify DEGs between 

myeloma LC/SP cells and MP CD138+ cells to explore 
the molecular characteristics of LC/SP cells. Based on 
the gene expression profile, we screened a total of 796 
DEGs, including 403 up-regulated and 393 down- 
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regulated genes. Subsequently, deeper exploration of 
these DEGs were performed by bioinformatics 
methods, including GO and KEGG pathway 
enrichment analysis, PPI network construction and 
modules analysis, selection of hub genes and survival 
analysis. 

 

Table 6. Multivariate Cox regression analysis of 9 genes used for 
constructing the prognostic model 

Symbol Coefficient HR Lower 95%CI Upper 95%CI P-value 
TFF3 0.566 1.762 1.240 2.503 0.002 
EPDR1 0.492 1.636 1.132 2.364 0.009 
MACROD1 0.745 2.107 1.189 3.734 0.011 
ARHGEF12 -0.540 0.583 0.389 0.874 0.009 
AMMECR1 0.862 2.369 1.142 4.913 0.020 
NFATC2 0.679 1.972 1.258 3.090 0.003 
HES6 0.513 1.671 1.091 2.560 0.018 
PLEK2 0.527 1.694 1.041 2.758 0.034 
SNCA 0.759 2.135 1.216 3.749 0.008 

 
GO enrichment analysis demonstrated that the 

up-regulated DGEs were significantly enriched in 
innate immune response, inflammatory response, 
plasma membrane and integral component of 
membrane. Firstly, according to our enrichment 
analysis, up-regulated DEGs were most enriched in 
innate immune response. As reported by Grivennikov 
SI et al., components of innate immunity such as 
macrophages, and DCs can either induce anti-tumor 
immune responses or promote tumor growth and 
progression depending on their morphological and 
phenotypic subtypes [30]. In multiple solid tumor 
models, the presence of tumor infiltrating 
macrophages (TAM) in tumor lesions can promote 
“stemness” property of cancer cells [31]. However, for 
MM, the association between SP cells and innate 
immune response has not been explained clearly yet. 
With regard to up-regulated DEGs enriched in 
immune response, it is now well-established that 
FGR, CXCL1, NLRC4 and S100A9 influence the 
pathogenesis of cancer by modulating immune 
responses and promoting progression, aggressiveness 
and cell survival [32-35]. Besides, up-regulated DGEs 
were also significantly enriched in inflammatory 
response. Then, the up-regulated DEGs were 
significantly involved in plasma membrane and 
integral component of membrane. It has been 
reported that the unique and specific makeup and 
arrangement of cell membranes of cancer cells are 
critical for cells to survive, grow and proliferate[36]. 
The enrichment analysis indicated that myeloma 
LC/SP cells may have unique plasma membrane and 
integral component of membrane compared to MP 
cells, and targeting the uniqueness may lead to the 
reduction of SP cells. Additionally, the down- 
regulated DEGs were significantly enriched in 
protoporphyrinogen IX and heme biosynthetic 

process, hemoglobin complex and erythrocyte 
differentiation, indicating that the down-regulated 
DEGs may be relevant to the development and 
differentiation of erythrocytes. Moreover, extra-
cellular exosome was also enriched significantly. 
Exosomes are membranous structures that carry 
signaling molecules and regarded as important 
mediators of inter-cellular communication in health 
and disease [37]. Studies have revealed a strong 
cross-talk between the MM cells and their 
microenvironment in the bone marrow, which leads 
to the final phenotype of a typical MM patient [38, 39]. 
This result demonstrated that extracellular exosome 
may function significantly in this small fraction of 
MM cells. 

KEGG pathway enrichment analysis showed 
some DEGs were significantly enriched in osteoclast 
differentiation, porphyrin and chlorophyll 
metabolism and cytokine-cytokine receptor 
interaction. Osteolytic bone disease is the hallmark of 
MM, which deteriorates the quality of life of myeloma 
patients. It has been demonstrated that increased 
osteoclast activity is one of the important mechanisms 
[40]. Among the DEGs, some studies found that 
PIK3CG, LILRB2 and CYBB could regulate the 
differentiation of osteoclast, which highlighted the 
possible biological significance of LC/SP cells in 
osteoclast differentiation [41-43]. ALAS2, significantly 
enriched in porphyrin and chlorophyll metabolism 
pathway, plays a key role in erythropoiesis by 
regulation of erythroid heme synthesis [44]. As 
already described in GO analysis, parts of the 
down-regulated DEGs may associate with the 
erythropoiesis, indicating that myeloma LC/SP cells 
may impair the erythropoiesis. CXCL1, significantly 
enriched in cytokine-cytokine receptor interaction 
pathway, could result in the enhancement of MM cell 
viability and migration [45]. Additionally, 
Staphylococcus aureus infection was enriched in 
KEGG pathway analysis. It’s well known that 
infectious complications are a frequent cause of 
morbidity and mortality of MM [46]. A prospective 
study observed the rate of infections varied in 
different phases of MM, and the most infections were 
clinically diagnosed as pneumonia and broncho-
pneumonia caused by Haemophilus influenzae or 
Streptococcus pneumonia in early-stage MM [47]. As 
to Staphylococcus aureus infection, a recent study 
showed that Staphylococcus aureus bacteremia (SAB) 
may be an early prognostic indicator of cancer 
because of the phenomenon that patients with SAB 
were more likely to die from cancer than the general 
population [48]. Furthermore, an association between 
SAB and risk of multiple myeloma was described [49]. 
According to our results, it is presumable that 
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myeloma SP cells may be relevant to infectious 
complications, especially the SAB infection, which 
opens a fundamental direction to understand 
infections for patients suffering from MM. However, 
the results need to be confirmed in further basic and 
clinical research. In brief, the enriched GO and KEGG 
pathways partly clarified the specific molecular 
characteristics of myeloma SP cells. 

Then a PPI network of these DEGs in myeloma 
LC/SP cells was established, containing 610 nodes 
and 2922 edges. In the network, we selected three 
significant modules through the degree of importance 
and corresponding GO term enrichment analysis was 
performed, which indicated that myeloma LC/SP 
cells was significantly associated with immune system 
process, immune response and cell cycle, basically 
consistent with what we mentioned above. 
Subsequently, ten significant hub genes have been 
identified, containing ITGAM, MMP9, ITGB2, FPR2, 
C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. 

ITGAM was identified as the top 1 hub gene 
and had the highest degree of connectivity. 
ITGAM encodes CD11b, a component of the 
macrophage-1 antigen complex (Mac1, also known as 
complement receptor 3 [CR3]), which together with 
CD18, form Mac-1 or CR3, a protein that mediates 
leukocyte adhesion, migration, and phagocytosis in 
different cells [50-53]. CD11b contributes to the 
phagocytosis of opsonized particles, including 
apoptotic cells and immune complex [53]. What’s 
more, CD11b is defined as a marker for 
myeloid-derived suppressor cells, which is reported 
to be harnessed by malignant cells to restrain anti-
tumor immunity and promote malignant expansion 
or refractoriness to treatment [54-56]. It has been 
considered as a poor prognostic factor in MM [57] and 
AML patients [58-61]. But association between SP cells 
and CD11b remains unclear, and it is presumable that 
CD11b may participate in the regulation of biology of 
LC/SP cells and its up-regulation may promote 
expansion of MM. ITGB2 produces a protein, known 
as CD18, which is a cell surface marker expressed on 
lymphocytes [62] and is involved in cell adhesion and 
cell-surface mediated signaling [63]. It has been 
demonstrated that mutation in the ITGB2 gene could 
lead to leukocyte adhesion deficiency [64]. And its 
expression in CLL cells predicts disease progression 
[65]. In MM cell line, ITGB2 is overexpressed in 
vincristine resistant cell line [66]. Nonetheless, the 
correlation of drug resistance and ITGB2 requires 
further analysis. 

As a key adhesion receptor, integrin CD11b/ 
CD18 meditates leukocyte migration and immune 
functions [67]. Recently, several studies have 
investigated that the adhesion and angiogenesis 

system is vital to propagate MM progression with a 
vicious cycle by the endothelial-MM interaction. β 
integrin has been described to participate in the 
homing and adhesion of endothelial progenitor cells 
to sites of vascular remodeling [68, 69]. It has been 
uncovered that some integrins were detected in high 
levels in MM, while in non-detectable levels in non- 
active MM and MGUS patients, suggesting the 
adhesion molecules support the interactions between 
MM and the microvasculature and facilitate disease 
progression [70]. Furthermore, junctional adhesion 
molecule A has been identified as a key mediator of 
MM progression by promoting MM-associated 
angiogenesis and an independent prognostic factor 
for both newly diagnosed MM and relapsed/ 
refractory MM [71, 72]. Similarly, our enrichment 
analysis of up-regulated DEGs had identified positive 
regulation of angiogenesis and cell adhesion, 
demonstrating that myeloma SP cells may be relevant 
to angiogenesis and cell adhesion to propagate MM 
progression. 

The significantly up-regulated MMP9 gene 
(matrix metallopeptidase 9), one of the most widely 
investigated matrix metalloproteinases, is a 
significant protease which plays vital roles in many 
biological processes and cancer cell invasion, 
metastasis and angiogenesis [73]. Recently, MMP9 has 
been identified as a potential biomarker for several 
cancers [74-78]. As far as MM concerned, previous 
reports indicated that the expression of MMP9 in MM 
cells promote MM invasion [79-84], which may 
highlight the role of increased neovascularization in 
MM progression. In fact, it has been testified that 
angiogenesis, which is linked to aberrant expression 
of pro-angiogenic and down-regulation of anti- 
angiogenic genes [85], is a feature of MM progression 
through the transition from MGUS to MM, and plays 
a role in medullary and extramedullary dissemination 
[86, 87]. Recently, several angiogenic factors in active 
MM have been discovered, like VEGF (Vascular 
endothelial growth factor), FGF-2 (Fibroblast growth 
factor-2), HGF (Hepatocyte growth factor), MMP-2/9 
and so on [88]. Additionally, data have shown that 
mTORC2 is involved in MM angiogenesis [89], and 
activation of the PI3K/AKT/mTOR pathway 
regulates pro-angiogenic factors of MMP-9 [90]. 
Besides, Notch signaling has been investigated in the 
cross talk between endothelial cells and MM cells to 
enable angiogenesis [91]. Consistently, in our GO 
enrichment analysis, the up-regulated DEGs were 
enriched in positive regulation of angiogenesis, 
suggesting the role of angiogenesis of myeloma SP 
cells. In a conclusion, neovascularization and positive 
regulation of angiogenesis may be regarded as 
potential factors in modulating MM progression and 
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deserving prognostic roles. Nevertheless, its 
biological mechanisms have not clearly revealed yet. 
In the future, additional studies are needed to further 
confirm the mechanisms of angiogenesis in myeloma 
SP cells. 

Extramedullary disease of MM remains a key 
area of therapeutic challenge, and the expression of 
adhesion molecules and changes in angiogenesis 
concerning mostly VEGF, MMP-9 and others are 
involved in extramedullary spread of MM cells [92, 
93]. Plasma cells from extramedullary plasmacytomas 
showed angiogenesis related expression [94]. What’s 
more, neovascularization can promote the growth of 
plasmacytomas [95]. These discoveries supported the 
idea that increased angiogenesis could facilitate 
malignant plasma cells growth outside the BM 
microenvironment. However, there are still unsolved 
questions on extramedullary myeloma involvement, 
especially on the relevant association with myeloma 
SP cells, which require further study. 

In our survival analysis, to evaluate the 
association between the DEGs and clinical survival of 
MM patients and predict the prognosis of MM 
patients, we revealed 9 DEGs including TFF3, EPDR1, 
MACROD1, ARHGEF12, AMMECR1, NFATC2, 
HES6, PLEK2 and SNCA to be significantly associated 
with survival and established a survival prediction 
model based on the 9 genes. Stratified by risk score, a 
significantly different clinical outcome of MM 
patients were showed by the Kaplan-Meier curve in 
both training and validation datasets. However, 
further investigation of these genes in clinical research 
is warranted. 

There are some limitations in our study. Firstly, 
the identification of DEGs profile was performed 
without external validation of other databases 
because of the absence of available data about SP cells 
compared to MP cells in MM. Second, we didn’t 
evaluate the correlation of the prognostic model with 
clinicopathological characteristics. Thirdly, our study 
was only analyzed based on bioinformatics analysis. 
Hence, further investigations are warranted to 
validate the results and enhance our understanding of 
the biological role of these genes in MM. 

Conclusions 
To sum up, we performed a comprehensive 

bioinformatics analysis on microarray data of 
myeloma LC/SP cells. DEGs were identified to be 
significantly enriched in various pathways, especially 
positive regulation of angiogenesis and cell adhesion. 
The results of this study increase our understanding 
of novel biomarkers of myeloma LC/SP cells, 
prediction of MM prognosis and potential therapeutic 
targets. Nevertheless, further relevant studies are 

needed to confirm the identified DEGs and pathways 
in LC/SP cells of MM. 
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