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Abstract 

Hashimoto’s thyroiditis (HT) is the most prevalent autoimmune thyroid disease (ATD) worldwide and is 
strongly associated with miscarriage and even recurrent miscarriage (RM). Moreover, with a deepening 
understanding, emerging evidence has shown that immune dysfunctions caused by HT conditions, including 
imbalanced subsets of CD4+ T-helper cells, B regulatory (Breg) cells, high expression levels of CD56dim 
natural killer (NK) cells, and cytokines, possibly play an important role in impairing maternal tolerance to the 
fetus. In recent years, unprecedented progress has been made in recognizing the specific changes in immune 
cells and molecules in patients with HT, which will be helpful in exploring the mechanism of HT-related 
miscarriage. Based on these findings, research investigating some potentially more effective treatments, such as 
selenium (Se), vitamin D3, and intravenous immunoglobulin (IVIG), has been well developed over the past few 
years. In this review, we highlight some of the latest advances in the possible immunological pathogenesis of 
HT-related miscarriage and focus on the efficacies of treatments that have been widely introduced to clinical 
trials or practice described in the most recent literature. 
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Introduction 
Hashimoto’s thyroiditis (HT), which is also 

known as chronic lymphocytic thyroiditis (CLT), is 
currently the most prevalent autoimmune thyroid 
disease (ATD) [1]. However, the etiopathogenesis is 
still incompletely defined. HT causes chronic 
inflammation of the thyroid tissues, and hypo-
thyroidism in approximately 20-30% of patients, 
especially in the female population [2-4]. Previous 
research has shown that HT is an independent risk 
factor for the occurrence and development of 
papillary thyroid carcinoma (PTC). Additionally, the 
complications of HT have a greater long-term 
negative impact on pregnant women. 

Currently, miscarriage occurs in 8-15% of 
clinically recognized pregnancies and approximately 
30% of all pregnancies in recent epidemiological 
investigations [5, 6], and chromosomal abnormalities 
account for approximately 50% of fetal losses in the 
first 8-15 weeks of gestation [7]. However, while the 

miscarriage rate has slightly decreased in recent years 
[5, 6], unexplained miscarriage and even recurrent 
miscarriage (RM), which is defined as two 
consecutive spontaneous losses or three or more 
spontaneous losses, severely impact the physical and 
mental health of the female population [8]. With a 
deepening understanding of the maternal and fetal 
immune response, unexplained miscarriage is closely 
related to an abnormally activated maternal immune 
system. 

Although HT is regarded as one of organ- 
specific autoimmune diseases (ADs), numerous 
clinical studies have confirmed that similar to other 
ADs, HT plays a vital role in women’s miscarriage 
and even RM [9-13]. With the development of cellular 
and molecular immunology, accumulating studies 
have found that not only hypothyroidism but also 
immune system disorders [14] caused by HT 
conditions are involved in the pathogenesis of 
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adverse pregnancy outcomes [15-18]. During a 
healthy pregnancy, the upregulation of regulatory T 
(Treg) cells and T-helper type 2 (Th2) cells represent a 
major maternal adaptation that helps with embryo 
implantation and the maintenance of pregnancy 
[19-21]. However, under HT conditions, the 
expression levels of proinflammatory cytokines are 
upregulated, while anti-inflammatory factors are 
downregulated [15, 17]. Due to the complex 
mechanisms underlying HT-related miscarriage, 
which are still under exploration, especially the 
pathway involved in the HT-mediated abnormally 
activated immune response, treatment decisions 
mainly focus on avoiding hypothyroidism and 
rebalancing the function of the immune system. 
However, the efficacies of L-thyroxine (L-T4) 
substitution and other immunomodulatory drugs are 
inconsistent in recent research [10, 22-25]. 

The purpose of this review is to summarize the 
specific changes in immune cells and cytokines under 
HT conditions, which can provide a basis for the 
investigation of more novel immunotherapies for 
women with HT-related miscarriage. In addition, we 
discuss the efficacies of treatments that have been 
widely introduced to clinical practice described in the 
most recent literature. 

HT and miscarriage 
Currently, HT is the most prevalent organ- 

specific AD, with an insidious onset, and can 
ultimately cause hypothyroidism in nearly 20%-30% 
of patients [1, 2]. The histological characteristics of HT 
include atrophy of follicular cells, diffuse lymphocyte 
infiltration in thyroid tissue, goiter, and fibrosis. In a 

recent large-scale epidemiological survey involving 
78,470 participants in China [26], the prevalence of 
positive thyroid globulin antibody (TgAb) and 
thyroid peroxidase antibody (TPOAb) were 9.7% and 
10.19%, respectively, with a dominance of females. 
Thus, HT is gradually becoming a noticeable problem 
in women’s health, including pregnancy in women of 
childbearing age [11, 27, 28]. Maternal hypo-
thyroidism has been shown to be significantly 
associated with miscarriage, preterm birth, and 
growth restriction. In addition, this condition can 
affect hormonal changes, resulting in decreased 
plasma concentrations of both total testosterone and 
estradiol (E2) [29, 30]. Consequently, L-T4 
supplementation is the most important initial 
treatment among patients with HT to avoid overt 
hypothyroidism, which may help reduce the 
prevalence of adverse pregnancy outcomes [30-32]. In 
contrast, numerous women with HT have been 
observed to be in SH, which is the precursor state to 
hypothyroidism. Similar to patients with overt 
hypothyroidism, these euthyroid patients with HT 
have higher rates of miscarriage and even RM than 
healthy control (Figure 1A). However, the efficacy of 
L-T4 supplementation among euthyroid women 
applied to prevent miscarriage and preterm birth 
induced by HT in recent research is inconsistent 
(Figure 1B). Notably, with the extended exploration 
of HT in recent years, an abnormally activated 
proinflammatory state of the immune system is found 
in these patients [14, 17, 18, 33-35]. Therefore, these 
findings enrich our knowledge of HT-related 
miscarriage, especially in euthyroid women. 

 

 
Figure 1. Hashimoto’s thyroiditis (HT) is an important risk factor in miscarriage and even recurrent miscarriage (RM). However, the efficacies of L-T4 supplementation are still 
debatable. (A). The percentage of miscarriage in thyroid peroxidase antibody-positive (TPOAb+) pregnancies euthyroid women and health controls (TPOAb-); ***p< 0.0001 and 
**p< 0.001 compared to control groups; *p = no statistical significance (NS) and &p= 0.002 compared to controls [11, 12, 24, 185, 186]; (B). The percentage of miscarriage among 
euthyroid women with TPOAb+ who received levothyroxine treatment (TPOAb+LT4) and had no treatment or placebo (TPOAb+); #p< 0.01 and *p = NS compared to controls 
[10, 22, 24, 25, 185]. 
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Immune system disorders 
As women increasingly exhibit unexplained 

reproduction failure [5, 36, 37], especially under HT 
conditions [9-12], many researchers have attempted to 
reveal the possible underlying mechanisms and 
facilitate the development of new and better 
treatment approaches, particularly for subpopulations 
of women with RM. Previous research has found that 
women with thyroid autoimmunity had a higher 
prevalence of the copresence of non-organ-specific 
autoantibodies, which could add to the risk of adverse 
pregnancy outcomes [38, 39]. Similarly, a recently 
published study reported a higher prevalence of RM 
in women with HT and nonendocrine autoimmune 
disorders (NEADs), such as atrophic gastritis and 
connective tissue diseases, than women with isolated 
HT (p<0.0001) [40]. Therefore, the phenomenon of a 
higher risk of miscarriage in women with HT and 
concurrent NEADs is helpful for understanding the 
pathogenesis of HT-related miscarriage and suggests 
that patients can simultaneously benefit from effective 
treatments for NEADs before conceiving. Regarding 
HT, although the circulating TPOAb or TgAb level 

has repeatedly been reported to be an independent 
risk factor determining miscarriage, the association 
between different titers of these antibodies and the 
risk ratio of miscarriage is still debatable [40-43]. 
Indeed, importantly, immune system disorders, 
including the upregulation of proinflammatory cells 
and downregulation of anti-inflammatory cells, are 
observed in the peripheral blood (PB) of patients with 
HT (Table 1). Thus, anti-thyroid antibodies are more 
likely markers of a potentially wider autoimmune 
imbalance. Additionally, some important cytokines, 
such as interleukin (IL)-10 and transforming growth 
factor-beta (TGF-β), are expressed at lower levels in 
maternal-fetal immune tolerance than in pregnant 
women without HT. Some researchers suggest that 
similar to other immune diseases, HT could share 
similar mechanisms in inducing pregnancy loss [16, 
18, 44]. The circulating TPOAb level [45, 46], abnormal 
immune system activation, an imbalance in subsets of 
T cells and Breg cells and a strong cytotoxic effect of 
natural killer (NK) cells [17, 18, 47] are possible 
mechanisms underlying the progression of HT- 
related miscarriage (Figure 2). 

 

 
Figure 2. There are existing endocrine and immune disorders in HT women, which can impair pregnancy outcomes. Firstly, the imbalanced differentiation of naïve CD4+T cells, 
such as the abnormal increased Th cells (Th1, Th17, Th22, Tfh) and cytokines (IL-2, IL-6, IL-12, IL-15, IL-17A, IL-21, IL-22, IL-23, IFN-γ, TNF-α), and decreased Th cells (Th2, 
Treg) and cytokines(IL-4, IL-10, TGF-β). Secondly, abnormal activated NKdim cell and its cytokines (IFN-γ, Granzyme B). Finally, the insufficient thyroid hormone caused by 
chronic inflammatory damage in the thyroid can delay the fetus's neurodevelopment and decrease the level of estrogen. 
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Table 1. Expression levels of immune cells and cytokines in Hashimoto’s thyroiditis 

Components Expression 
(U/D/I) 

Function and correlation with miscarriage and RM Reference 

Cells    
Th1 U Proinflammatory; The low level of Th1 cell expression has a positive effect on placenta formation, but high 

expression of cytotoxic factors levels, including IFN-γ and TNF-α, will impair immune tolerance at the 
maternal-fetal interface during pregnancy. 

[58, 62, 151] 

Th2 D Anti-inflammatory; Th2 cells can significantly inhibit the activation of T cells and promote immune tolerance at 
the maternal-fetal interface. 

[16, 152] 

Th1/Th2 U The ratio of Th1/Th2 reflects the functional balance between proinflammatory and anti-inflammatory cytokines 
in the human immune system. The higher this ratio, the more severe inflammatory reaction is, which can impair 
the process of pregnancy. 

[16, 58, 59] 

Th17 U Proinflammatory; The Th17 cells’ responses are often overwhelming in HT, which may cause the immune system 
to shift towards an inflammatory profile and impair the immune tolerance at the maternal-fetal interface during 
pregnancy. 

[50, 61] 

Th22 U Immunoregulatory; The Th22 cell can regulate the chronic inflammatory reaction, which is crucial for embryo 
implantation and the success of pregnancy. 

[51, 61] 

Tfh U Immunoregulatory; Memory Tfh cells have a central role in the regulation of the adaptive immune response. A 
higher number of Tfh is observed in RM women than controls. 

[15, 34, 153] 

Treg D Treg cells can inhibit effector immunity, contain inflammation, and support maternal vascular adaptations. 
Insufficient Treg numbers or inadequate functional competence are implicated in RM 

[20, 33, 154] 

Breg U/I Anti-inflammatory; Breg can both suppress the pro-inflammatory response, mostly by the production of IL-10 
cytokine, and enhance the activity of Treg cells. But dysfunctions of Breg cells were determined in PB of HT 
patients. Whether it could further impair the immune tolerance at the maternal-fetal interface during pregnancy 
need more research to evaluate. 

[65-67, 69, 71] 

NK U Proinflammatory; dNK cells, one of NK cell subsets, are important to placenta formation in early pregnancy. But 
abnormal activated NKdim cells can cause miscarriage and even RM by cytotoxic activities. 

[73, 75, 144] 

Cytokines    
IFN-γ U Proinflammatory; By increasing the expression of MHC-I and MHC-II and stimulating NK and Th1 inflammatory 

responses, abnormal IFN-γ responses can induce the miscarriage and RM. 
[4, 155, 156] 

TNF-α U Proinflammatory; TNF-α, same as TNF-β, has the cytotoxic effects, but whether TNF-α is associated with 
miscarriage needs more exploration. 

[157, 158] 

IL-2 U Proinflammatory; It promotes the polarization of Th1 cells and immune responses, but whether it can impair the 
pregnancy need further research. 

[159, 160] 

IL-4 D Anti-inflammatory; IL-4 is one of the important anti-inflammatory cytokines in regulating immune tolerance at 
the maternal-fetus interface. 

[55, 56, 58, 63] 

IL-10 D Anti-inflammatory; IL-10 is one anti-inflammatory cytokine with important immunoregulatory functions and 
plays an important role in a successful pregnancy. 

[54, 66, 161] 

IL-17 U Proinflammatory; It was observed increasing in healthy pregnancy but not in spontaneous abortion. [162-165] 
IL-21 U Proinflammatory; IL-21 can induce the Th17 differentiation, inhibit the Treg development, and modulation of 

antibody responses of B lymphocytes. But further research needs to investigate the correlation between IL-21 and 
miscarriage. 

[166-168] 

IL-22 U Anti-inflammatory; High expression levels of IL-22 potentially represent the reparative processes of organisms, 
which may be a biomarker of placental dysfunction caused by chronic inflammation. 

[169-172] 

IL-23 U Proinflammatory; It plays an important role in early pregnancy, while the abnormally increased expression level 
of IL-23 can induce a miscarriage. 

[173-175] 

Granzyme B U Cytotoxic effect; high levels of Granzyme B may impair the embryonic development. [176] 
TGF-β D/I Anti-inflammatory; The expression level of the TGF-β is related to hormone levels during pregnancy, which is 

important to maintain pregnancy. 
[177-180] 

Other factors    
PD-1/PD-L1 U Anti-inflammatory; High expression levels of PD-1 and PD-L1 in the uterine decidua can inhibit the activity of the 

inflammatory cells, which are critical for the success of the pregnancy. However, it does not seem that increased 
expression levels of PD-1 and PD-L1 in HT tissues are beneficial to decrease the risk of miscarriage. 

[79, 181, 182] 

FoxP3 D/I Anti-inflammatory gene; the low expression and splice variants of FoxP3 induce Treg function defect and further 
impair the expression level of CD4+CD25+FoxP+ cells, which may increase the risk of miscarriage. 

[33, 88, 89, 183] 

Tim-3 †D Anti-inflammatory gene; combined with PD-l, Tim-3 signaling can enhance the expression levels of 
immunosuppressive cells to promote the maternal-fetal immune tolerance. 

[21, 82-84, 184] 

†D: Lower expression of Tim-3 than controls was observed in Graves’ disease patients with thyroid-associated ophthalmopathy but not in HT patients. 
 
 

CD4+ T-helper cells 
Similar to other ADs, HT is often accompanied 

by immune dysfunction, especially imbalanced 
subsets of CD4+ T-helper cells. Consequently, the 
unregulated expression of cytokines secreted by 
different T-helper cell subsets may contribute to the 
progression of HT and its complications. For instance, 
numerous studies revealed higher levels of T-helper 
type 1 (Th1) and T-helper type 17 (Th17) cells but 

lower Th2 and Treg cells in the PB of women with HT 
[44, 48]. 

For successful implantation and fetal 
development during pregnancy, the proportions of 
naïve CD4+ T-helper cell subsets, which are mainly 
differentiated into Th1 cells, Th2 cells, Th17 cells, and 
Treg cells, are significantly correlated with immune 
tolerance at the maternal-fetal interface [19, 48, 49]. On 
the one hand, cytokines, including interferon-gamma 
(INF-γ), tumor necrosis factor-alpha (TNF-α), and 
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IL-17, secreted by Th1 and Th17 cells [50-52] can 
promote trophoblast differentiation and fusion during 
placenta formation. In addition, controlled, mild 
inflammation on the maternal-fetal interface and 
extravillous trophoblast cells (EVTs) play a crucial 
role in proper remodeling and invasion of maternal 
spiral arteries in the uterine decidua [52, 53]. On the 
other hand, during pregnancy, cytokines, including 
TGF-β, IL-4, and IL-10, secreted by Th2 and Treg cells 
can regulate maternal-fetal immune tolerance for 
better embryo implantation and development [54-58]. 
Moreover, the balance of CD4+ T cell subsets, 
especially the Th1/Th2 ratio on the maternal-fetal 
interface, is closely related to reproductive success 
[16, 59]. Therefore, continuous high expression levels 
of proinflammatory cytokines and low expression 
levels of anti-inflammatory cytokines in T cell subsets 
in PB [60-62] can weaken immune tolerance at the 
maternal-fetal interface and the progression of 
thyroiditis (Figure 2). Regarding euthyroid patients 
with HT with (or without) NEADs, notably, an 
inspiring study by Santaguida et al. [63] measured the 
intracellular Th1 and Th2 distinctive cytokine levels 
(IL-2 in Th1 and IL-4 in Th2) in these patients. 
Correspondingly, a significant increase in Th1 cells 
was observed in these patients with NEADs, which 
was consistent with the changes in Th1 in patients 
with mild or severe hypothyroidism with HT [58]. 
However, the main difference was observed in the 
percentages of Th2 cells between the patients with 
isolated HT and patients with NEADs. As these two 
studies discovered, a reduced percentage of Th2 cells 
was detected in patients with HT, and this percentage 
was significantly positively correlated with the 
disease severity [58, 63]. In contrast, most patients 
with concurrent NEADs had a significantly increased 
percentage of Th2 cells and a lower Th1/Th2 ratio 
than the patients with isolated HT (1.78 vs. 3.8). Thus, 
detecting the Th1/Th2 ratio in women with HT before 
and during pregnancy is warranted to discover 
potential systemic ADs and predict the risk of adverse 
pregnancy outcomes; however, further research is 
needed to prove this possible relationship. 

B regulatory cells 
Traditionally, B cells are involved in the 

pathogenesis of ADs (such as systemic lupus 
erythematosus, SLE) through antigen (Ag)-specific 
autoantibody production [64]. However, with the 
deepening of clinical and basic research, the negative 
regulatory effects on cellular immune responses and 
inflammation have been determined in Breg cells, 
which constitute a small subset of B cells (Figure 3). 
Numerous cytokines produced by Breg cell subsets 
have been determined, and IL-10 is the most widely 

studied [65-68]. A recently published comprehensive 
review noted that IL-10 secreted by Breg cells could 
independently not only suppress Th1 and enhance 
Th2 polarization but also inhibit IFN-γ and TNF-α 
responses in vitro [69]. However, this effect was 
weakened in patients with NEADs [68, 70]. In a study 
conducted by Flores-Borja et al. [68], the efficacies of 
CD19+CD24hiCD38hi Breg cells in the polarization of 
CD4+ T-helper cells were compared between patients 
with active rheumatoid arthritis (RA) and healthy 
controls. As the authors determined, in the healthy 
patients, CD19+CD24hiCD38hi Breg cells could inhibit 
naïve T cell differentiation into Th1 and Th17 cells and 
convert CD4+CD25− T cells into regulatory T cells 
(Tregs) by the production of IL-10. However, the 
number and function of CD19+CD24hiCD38hi Breg 
cells were reduced and impaired in the patients with 
active RA, respectively, such that these cells could 
only maintain the capacity to inhibit Th1 cell 
differentiation [68]. The phenomenon of increased 
expression levels but impaired negative-regulation 
functions of Breg cells was also observed in patients 
with HT [65, 66]. Notably, Santaguida et al. [65] found 
a similar percentage of unstimulated Breg and Breg 
memory cells in patients with HT and healthy 
controls, while euthyroid patients with HT showed an 
increased proportion of functional Breg cells 
(CD19+CD24hiCD38hiIL-10+Breg cells). Moreover, 
these authors also demonstrated an increased number 
of Breg cells with reduced functional parts in patients 
with HT and concurrent NEADs compared with 
patients with isolated HT. This insightful discovery 
and their latest research concerning this topic [40] 
suggest that more attention should be paid to HT 
women with NEADs because these women may have 
more frequent and severe immune system disorders 
and a higher risk of miscarriage and even RM. 
However, to date, the literature concerning the 
functions of Breg cells in immune tolerance in 
pregnancy is limited to only one study, which 
revealed a beneficial impact in successful delivery 
[71]. In addition, whether the impaired functions of 
Breg cells in HT are related to adverse pregnancy 
outcomes requires more extensive research. 

NK cells 
The different subtypes of NK cells, including 

CD16+CD56dim (90%), CD16- CD56bright, and CD162, 
play a central role in resisting viruses and inhibiting 
the early spread of tumors by secreting cytokines, 
such as IFN-γ, and mediating antibody-dependent 
cell-mediated cytotoxicity (ADCC) [72]. However, 
some studies demonstrated that the frequency of 
CD56dim NK cells in the PB of euthyroid women with 
HT was significantly higher than that in healthy 
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controls [15, 18, 73]. This finding indicates that 
abnormally activated NK cells are possibly involved 
in the progression of HT and subsequent 
complications. The current study finds that CD56bright 
CD25+ NK cells, which are regarded as decidual NK 
(dNK) cells and constitute 70% of decidual immune 
cells during a normal pregnancy, are considered to 
play a pivotal role in trophoblast invasion and uterine 
spiral artery remodeling and exert a regulating effect 
at the maternal-fetal interface [74]. However, instead 
of dNK cells, the high levels of CD16+CD56dim NK 
cells derived from other body parts through blood 
circulation can impair maternal tolerance to the fetus. 
As shown in most recent studies, the percentage of 
peripheral CD3− CD56+ CD16+ NKdim cells in women 
with RM is higher than that in healthy controls (p< 
0.0001) [75]. Thus, altogether, these results imply that 
the abnormal activation of CD56dim NK cells under 
HT conditions may share the same cytotoxic effects on 
the fetus during gestation and lead to early 
miscarriage in women. 

 

 
Figure 3. In healthy individuals, Breg cells play an important role in maintaining the 
crucial balance between the pool of Tregs/Th1/Th2/Th17 populations by the release 
of IL-10. The negative regulatory effects of Breg cells thereby limit inflammatory 
responses and subsequent tissue damage. 

 

PD-1 
Although programmed cell death-1 (PD-1) is 

widely identified as an essential target that promotes 
the invasion and metastasis of tumors [76-78], it also 
plays an indispensable role in maintaining maternal- 

fetal tolerance when coexisting with T cell immuno-
globulin mucin-3 (Tim-3). For example, in an animal- 
based experiment [21], the augmented coexpression of 
PD-1 and Tim-3 on CD4+ T cells promoted the 
predominant production of Th2 cells, and the 
increased secretion of Th2-type cytokines, such as IL-4 
and IL-10, contributed to maintaining normal 
pregnancy. Although many studies have revealed that 
PD-1 and programmed cell death-ligand 1 (PD-L1) are 
highly expressed in HT tissues [34, 48, 79, 80] 
regardless of whether differentiated thyroid 
carcinoma (DTC) coexists, it seems to be the response 
to HT conditions in the immune microenvironment. 
However, the poor suppressive function of the 
moderating effect is unable to modify the 
inflammatory phenomenon in the thyroid and 
accidentally promotes the metastasis of DTC [80, 81]. 
To date, whether a difference exists in the PD-1 
expression level on the maternal-fetal interface 
between women with HT and non-HT women during 
early pregnancy, which may have potential clinical 
applications for predicting the occurrence of 
miscarriage, still remains inconclusive. 

Tim-3 
Regarding Tim-3, which is an important 

inhibitory molecule, numerous studies have 
demonstrated its essential role in maintaining early 
pregnancy [82-84]. Tim-3 plays a positive role in the 
establishment and maintenance of maternal-fetal 
tolerance by regulating maternal decidual CD8+ T 
(dCD8+T) cell responses and the subpopulation of NK 
cells. In one study [84], a distinct NK cell 
subpopulation, i.e., Tim-3+ NK cells, was identified to 
display immunosuppressive activities, including the 
production of anti-inflammatory cytokines and the 
induction of Treg cells. However, Tim-3+ NK cells 
from patients with RM were less capable of inducing 
forkhead box P3 (Foxp3) + T cell generation in early 
pregnancy than cells from normal pregnant women. 
To the best of our knowledge, only a few research 
reports have explained the role of Tim-3 in the 
progression of ATD. However, there were no 
functional polymorphisms in the Tim-3 gene among 
the patients with HT and normal subjects in one small 
sample study [85]. Nonetheless, the expression of 
Tim-3 at the maternal-fetal interface in women with 
HT, especially women with HT-related miscarriage, is 
worthy of further exploration because the inhibitory 
effect of Tim-3 has a profound impact on ADs and 
systemic immunity. Thus, Tim-3+ cells may not only 
become a biological marker for predicting the 
occurrence of miscarriage during early pregnancy but 
also be a potential target in immunotherapy for 
HT-related miscarriage. 
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Figure 4. There are multiple treatments for women with HT to lower the risk of miscarriage and even RM, and the efficacies of them remain to be determined.  

 

FoxP3 
Generally, Treg cells are involved in maintaining 

immune homeostasis and self-tolerance by inhibiting 
the pro-inflammatory activities of CD4+ and CD8+ 
effector T cells, NK cells, and antigen-presenting cells. 
More importantly, FoxP3, which is known as a critical 
transcription gene for Treg cell function, is regarded 
as an additional marker of the regulation of maternal 
immune tolerance [86]. However, the expression and 
polymorphisms of FoxP3 in patients with HT are 
lower and higher, respectively, than those observed in 
controls, which are often accompanied by decreased 
proportions of CD4+CD25+FoxP3+ cells [33, 48, 87, 88]. 
Therefore, the low expression level of Treg cells in 
women with HT may cause insufficient immuno-
suppression during pregnancy, which could impair 
the maternal tolerance to the semiallogeneic fetus and 
fetal development [89]. 

Indeed, multiple immune pathways are 
significantly correlated with HT and can further 
influence the process of pregnancy (Table 1), 
although the mechanisms by which circulating 
TPOAb or HT mediates systemic immune disorders 
are still unclear. In addition, with the development of 
cellular and molecular immunology, a range of 
immunotherapies aiming to decrease the miscarriage 
rate, including TNF-α inhibitors [90], intravenous 
immunoglobulin (IVIG) [59, 75], and other pathway 
inhibitors, have been introduced to clinical trials 

[91-93]. However, we need to seriously consider the 
complications that such treatments may cause in 
pregnant women. Particularly in women with HT 
coexisting thyroid carcinoma (TC), suppressing the 
immune system may promote the central lymph node 
metastasis (CLNM) of tumors. Furthermore, high- 
quality studies are needed to reveal the immune- 
mediated mechanisms because understanding the 
immune-pathogenic mechanism underlying HT- 
related miscarriage is pivotal for the development of 
novel immunotherapies. 

Treatments for HT-related miscarriage 
Currently, multiple treatments for HT-related 

miscarriage have been widely introduced to clinical 
trials or practices (Figure 4). Indeed, L-T4 
supplementation, which is recommended by the 
American Thyroid Association (ATA) [32], is still the 
main treatment used to decrease the incidence of 
overt hypothyroidism during pregnancy among 
euthyroid women. Immunoregulatory drugs, such as 
selenium [94, 95] and vitamin D3 [96], have been 
discovered to efficiently alleviate HT progression and 
regulate the immune system, which may benefit 
pregnancy outcomes. However, the efficacies of these 
drug therapies are still controversial in different 
studies. In addition, to rebalance the immune system, 
IVIG may become a novel, potentially more effective 
therapeutic strategy used to maintain pregnancy in 
some women with HT. 
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Levothyroxine 
Currently, L-T4 remains the gold standard in the 

treatment of patients with hypothyroidism [97] and 
ranks as one of the most widely used drugs 
worldwide. Since the last century, a certain amount of 
evidence [23, 98] has demonstrated that adequate 
L-T4 supplementation (25-50 μg/d as a typical 
starting dose) before pregnancy can decrease the risk 
of HT-related miscarriage and premature birth. L-T4 
can not only maintain normal thyroid hormone levels 
but also inhibit the TSH level (below 2.5 mU/L) [32]. 
However, with the exploration of autoimmune 
thyroiditis, many studies [10, 22, 24, 25] reached the 
contrary conclusion that regular L-T4 substitution 
could not decrease the risk of miscarriage in 
TPOAb-positive women (Figure 1B). Even in a recent 
report [99], a debate existed regarding whether a 
TPOAb-positive woman with a history of miscarriage 
needs low-dose L-T4 treatment to increase her 
chances of conceiving. Notably, one randomized 
controlled trial (RCT), performed by Dhillon-Smith et 
al. [22] concluded that there was no significant 
difference in the live birth rate between the group of 
TPOAb-positive euthyroid women who received L-T4 
tablets (50 μg/d) for six months and the group of 
TPOAb-positive euthyroid women who were treated 
with placebo alone. The authors further indicated that 
pregnant women with HT cannot benefit from L-T4 
supplementation decreasing the risk of adverse 
pregnancy outcomes. Notably, as these authors 
discussed, the main limitation of this trial was the 
fixed-dose of the L-T4 tablet supplementation instead 
of using a dosage based on the body mass index 
(BMI), which may be insufficient for women with a 
high BMI and, thus, could lead to negative results. 
Therefore, it is reasonable to consider adjusting the 
dose of L-T4 based on the serum TSH and thyroxine 
(T4) concentrations measured at each follow-up visit. 
Most recently, two meta-analyses performed by the 
group of Rao et al. [23, 98] confirmed that L-T4 
supplementation treatment reduced the risk of 
miscarriage and preterm birth in women with HT 
with naturally conceived pregnancies. However, in 
women who underwent in vitro fertilization (IVF) or 
intracytoplasmic sperm injection (ICSI), the efficacies 
of L-T4 supplementation in preventing miscarriage or 
preterm birth were insufficient. Therefore, RCTs with 
larger sample sizes and different races and regions are 
needed to strengthen the evidence regarding the 
positive effects of L-T4 in decreasing the miscarriage 
rate among thyroid autoantibody-positive women. 

Furthermore, L-T4 is a critical-dose drug because 
slight changes in the blood concentration may result 
in treatment failure and iatrogenic thyrotoxicosis. 
Therefore, for easier compliance and management, 

novel thyroxine formulations, including liquid 
preparations and softgel, have been invented in recent 
years [100]. Compared with traditional L-T4 
preparations (tablets), these new types of L-T4 
preparations at the same dose perform better in 
suppressing the serum TSH values and obtaining 
normal thyroid hormone levels, especially in pregnant 
women [101], unselected patients without evident 
malabsorption [102, 103] and even euthyroid patients 
[104]. Choosing a more suitable L-T4 preparation for 
euthyroid women can not only reduce the impact of 
the drug absorption rate on the resulting efficacy in 
decreasing the miscarriage rate but also benefit 
precision medicine with individualization of the L-T4 
dose. 

Selenium 
Selenium is an essential trace mineral, and the 

thyroid has a higher concentration of selenium than 
most other organs, reflecting the importance of 
selenium for thyroid metabolism [105]. Selenium has 
been identified as a component of multiple enzymes 
that have numerous functions ranging from 
antioxidant and anti-inflammatory roles to the 
production of active thyroid hormone [106]. Selenium 
deficiency can not only impair thyroid hormone 
synthesis and metabolism but also lead to an 
imbalance in the immune system [107]. Many surveys 
have demonstrated that women with HT often have 
selenium deficiency, which may reflect the potential 
immune disorders in these patients [94, 108]. 
Meanwhile, numerous studies have shown that a 
significant decrease in serum anti-thyroid antibodies 
was present in patients who received Se 
supplementation. For instance, as determined in a 
systematic review and meta-analysis, Se 
supplementation (60-200 μg/d in different trials) can 
significantly decrease the anti-thyroid antibody level, 
especially the serum TPOAb level, in the L-T4-treated 
population [109]. This result is consistent with 
findings showing a decreasing autoantibody titer in 
another double-blind RCT in Italy (45 cases), [110]. 
The latter study further concluded that Se 
supplementation was safe during pregnancy and after 
delivery at a dosage of 83 mcg/d. [110]. Interestingly, 
some research did not find that isolated Se 
supplementation can prevent the progression of HT 
[111-113], while combined treatment with L-T4 
supplementation was observed to improve the 
therapeutic effects in delaying the deterioration of 
chronic inflammation in HT compared with L-T4 
monotherapy [114]. Thus, the efficacies of Se 
supplementation in ATDs and even pregnancy 
outcomes remain controversial. The main reasons for 
this divergence could be the different doses and 
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preparations of Se (200 μg/d vs. 60 μg/d) used in 
these trials and whether the individual treatments 
were combined with L-T4 supplementation. Selenium 
compounds, such as selenomethionine, sodium 
selenite, and selenium yeast, which are prescribed to 
patients, vary among studies [109]. Furthermore, 
there are still many other confounding factors in the 
inclusion criteria, such as other nutritional 
deficiencies, geographical location, dietary habits, 
initial thyroid function, and other concurrent NEADs. 
Some previous studies have found that women 
suffering from miscarriage or RM had lower 
concentrations of Se than healthy controls [115, 116]. 
Even in two recent review reports, both studies 
further highlighted that Se deficiency is significantly 
associated with disorders related to human 
reproduction and pregnancy [117, 118]. However, 
sufficient evidence regarding the efficacy of Se 
supplementation in decreasing antithyroid antibodies 
and preventing miscarriage in euthyroid women is 
lacking [112, 119, 120]. Therefore, more studies are 
needed to provide better clinical evidence proving the 
ability of Se to reduce thyroid inflammation. 
Additionally, evidence suggesting that thyroid 
antibodies can directly damage the placenta is limited. 
Moreover, a high concentration of selenium in PB 
could be toxic to pregnant women and their fetuses 
[121, 122]. Thus, following the ethical principle of 
“First do no harm” and the recommendation in the 
2017 ATA guideline [32], currently, high-level 
evidence supporting the routine use of Se 
supplementation in TPOAb-positive women during 
pregnancy to decrease the risk of miscarriage is 
lacking. 

Vitamin D3 
Vitamin D has been found to play an 

increasingly crucial regulatory role in bone 
metabolism, the mucosal barrier, and the immune 
system in the past few decades. More recently, 
numerous studies have highlighted that an 
insufficient level of 25-hydroxyvitamin D [25(OH)D] 
is significantly associated with HT [123-125]. 

Thus, 25(OH)D supplementation seems to be a 
potentially effective method for alleviating HT 
progression and moderating the immune system to 
achieve a better pregnancy. For instance, one RCT 
found that women with HT treated with 
cholecalciferol (vitamin D3) supplementation for 
three months had a significant decrease in the 
Th17/Th1 ratio (p< 0.046) and enhanced expression of 
IL-10, even though the serum vitamin D level in the 
two groups did not significantly differ after the 
treatment [35]. In addition, the efficacy of vitamin D in 
decreasing the TPOAb level is still debatable. Some 

studies [126, 127] found that vitamin D3 can 
significantly reduce the TPOAb levels, but one study 
[128] reached the following different conclusion: there 
was no significant reduction in the TPOAb levels in 
the vitamin D group compared with the placebo 
group (p = 0.08). Indeed, many beneficial effects of 
vitamin D3 supplementations in patients with HT 
have been observed in different clinical trials. 
However, the dose-limiting toxicities of vitamin D3 
are also nonnegligible risk factors during treatment. 
Further studies are needed to obtain better clinical 
evidence to support clinical decision making, 
especially for women with HT, and determine 
whether they can benefit from these immuno-
modulatory drugs, including Se and vitamin D3, 
before and during gestation. 

Intravenous immunoglobulin 
IVIG has been regarded as a lifesaving treatment 

for patients with primary immunodeficiency or severe 
infection in the last centuries [129, 130]. More 
importantly, during the past few decades, 
accumulating studies have found that IVIG could 
regulate the immune system, such as NK cells, Th1 
cells, and Th2 cells, which might be helpful for 
patients with ADs [131-133]. Many studies have 
discovered that women with RM presented an 
abnormal activation of the immune system [134-136]; 
IVIG is currently introduced as a novel treatment for 
women with RM. Expectedly, the results are 
encouraging [59, 137-141] and show that IVIG can 
significantly increase reproductive success in women 
with a history of RM. For instance, Ahmadi et al. [59] 
found that IVIG can dramatically regulate the 
Th1/Th2 ratio by decreasing Th1 (CD4+ IFN-γ+) cells 
and increasing Th2 (CD4+ IL-4+) cells (p<0.0001). 
Additionally, the birth rate in the IVIG group was 
significantly higher than that in the control group 
(87.5% vs. 41.6%, p<0.0001). Furthermore, in another 
study [75], the authors demonstrated that IVIG could 
decrease the number of NK cells and the activating 
receptors KIR2DS1, KIR2DS4, and NKG2D in women 
with RM. As some research concluded, low-dose (0.2 
g/kg) IVIG therapy can significantly increase the live 
birth rate in women with HT by rebalancing the 
functions of the immune system [142, 143]. 

Nonetheless, in recent years, some scholars [144, 
145] have held different views regarding this 
immunotherapy in women with RM. On the one 
hand, in some earlier research [146, 147], compared 
with the control (placebo) group, IVIG had no 
significant beneficial effect on decreasing the 
miscarriage rate in women with RM. On the other 
hand, in contrast to CD56dim NK cells, dNK [148-150] 
cells perform poorly in exhibiting cytotoxicity or 
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secreting IFN-γ. However, these cells play an essential 
role in regulating maternal tolerance to the semi-
allogeneic embryo and the invasion of trophoblast 
cells, which is essential for forming the placenta. 
Numerous immunotherapies may harm this process 
without any benefit. In addition, IVIG could affect the 
maternal immune system without guaranteed 
beneficial results and is often accompanied by mild 
adverse events. 

In recent years, different studies have reported 
that IVIG has positive impacts on increasing the live 
birth rate in women with RM [59, 75, 142]; however, 
the high cost per infusion and possible side effects, 
such as fever and even anaphylaxis, should be 
carefully considered during the treatment decision- 
making process. Due to the lack of high-level clinical 
evidence, IVIG treatment is still not recommended for 
euthyroid women with a history of recurrent 
pregnancy loss. Further RCTs are needed to 
determine whether IVIG treatment has long-term 
effectiveness in women who suffer from HT-related 
miscarriage and evaluate the comparative efficacy 
with drug therapies at different levels. 

Conclusion 
Although significant progress has been made in 

our understanding of the contributions of immune 
dysfunctions triggers to HT related miscarriage, its 
pathogenesis is still not fully comprehended. In recent 
years, it confirmed the abnormal expression levels of 
multiple immune cells and cytokines in HT patients, 
especially the proinflammatory polarization of naïve 
T cells and NK cells. Meanwhile, the role of Breg cells 
in immune-mediated diseases has been also 
recognized, but the significance of the participation of 
Breg cells in the progression of HT is rather 
insufficient. The specific changes of these immune 
cells and cytokines can not only positively contribute 
to a better understanding of the role of immune 
dysfunctions in HT women with adverse pregnancy 
outcomes, but also provide further insights into the 
novel treatment for HT related miscarriage. 
Furthermore, even though multiple immunotherapies 
in decreasing the risk of HT related miscarriage have 
been introduced to the clinical trials and practice, the 
efficacies and safety of these drugs are still needed to 
have further evaluation. Nevertheless, the rapidly 
advancing in this field is becoming the most potential 
treatment component of HT related miscarriage. 
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