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Abstract 

RNA binding protein (RBPs) dysregulation has been reported in various malignant tumors and plays a 
pivotal role in tumor carcinogenesis and progression. However, the underlying mechanisms in renal cell 
carcinoma (RCC) are still unknown. In the present study, we performed a bioinformatics analysis using 
data from TCGA database to explore the expression and prognostic value of RBPs. We identified 125 
differently expressed RBPs between tumor and normal tissue in RCC patients, including 87 upregulated 
and 38 downregulated RBPs. Eight RBPs (RPL22L1, RNASE2, RNASE3, EZH2, DDX25, DQX1, EXOSC5, 
DDX47) were selected as prognosis-related RBPs and used to construct a risk score model. In the risk 
score model, the high-risk subgroup had a poorer overall survival (OS) than the low-risk subgroup, and 
we divided the 539 RCC patients into two groups and conducted a time-dependent receiver operating 
characteristic (ROC) analysis to further test the prognostic ability of the eight hub RBPs. The area under 
the curve (AUC) of the ROC curve was 0.728 in train-group and 0.688 in test-group, indicating a good 
prognostic model. More importantly, we established a nomogram based on the selected eight RBPs. The 
eight selected RBPS have predictive value for RCC patients, with potential applications in clinical 
decision-making and individualized treatment. 
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Introduction 
With nearly 73,750 estimated new cases in the 

US, renal cancer is one of the most common cancers 
expected to be diagnosed in 2020 [1]. In turn, the most 
common type of renal cancer is renal cell carcinoma 
(RCC), accounting for nearly 80% of renal cancers [2]. 
The definite pathogenesis of renal cancer is still 
unknown. The certain risk factors include smoking, 
bodily form and the history of chronic kidney disease 
[3]. Surgical resection, targeted therapy and novel 
immunotherapy agents have been extensively used in 
clinics [4]. The early diagnosis of renal cancer is 
difficult and some patients always have distant 
metastases even at early diagnosis with a poor 
prognosis [5]. Therefore, exploring the valuable 

prognostic biomarkers is crucial for RCC patients. 
RNA-binding proteins (RBPs) play a key role in 

post-transcriptional gene regulation (PTGR) [6]. RBPs 
can interact with coding and non-coding RNA by 
forming ribonucleoprotein (RNP) complexes [7]. In a 
sequence- and structure-dependent manner, RBPs can 
combine with target RNA to affect mRNA stability, 
mRNA maturation, splicing, export and translation, 
thus playing important roles in cell proliferation and 
differentiation [8]. Recent studies have revealed that 
the deregulation of RBPs are common in many 
cancers, including myeloid leukemia, breast cancer, 
hepatocellular carcinoma, colorectal cancer, lung 
cancer, ovarian cancer, glioblastoma, and bladder 
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cancer [9-18]. RBPs regulate multiple signaling 
pathways involved in tumor proliferation, evasion of 
cell death, tumor invasion, stemness maintenance, 
reprograming energy metabolism, and immunity 
regulation [19]. However, the studies of RBPs are rare 
in RCC, and the roles of RBPs playing in RCC 
initiation and progression are still unclear. 

In our study, RCC RNA-sequencing and clinical 
information from The Cancer Genome Atlas (TCGA) 
database were downloaded to perform a systematic 
functional study. We used R software packages to 
select differently expressed RBPs between tumor and 
normal samples and analyze their functions and 
molecular mechanisms systematically. We identified 
some prognosis-related RBPs from RCC patients, 
which can help us understand the molecular 
mechanisms of renal cell carcinoma and could be the 
potential biomarkers for diagnosis and prognosis. 

Materials and methods  
Data processing 

We downloaded the RNA sequencing dates and 
clinical information of RCC patients from The Cancer 
Genome Atlas database (TCGA, http://portal.gdc 
.cancer.gov/), containing 539 RCC samples and 72 
normal renal tissue samples. The R language Limma 
package (http://www.bioconductor.org/packages/ 
release/bioc/html/limma.html) was used to analyze 
the data and select the differently expressed RBPs. All 
raw data was preprocessed with the Limma package 
and excluded genes with an average count value less 
than 1. The screening standard was: P<0.05, 
|log2FC)| >1.0. 

KEGG pathway and GO enrichment analysis 
We performed GO and KEGG pathway 

enrichment analyses to explore the function and 
mechanisms of differently expressed RBPs. The R 
packages ClusterProfiler, org.Hs.eg.db, enrichplot 
and ggplot2 from Bioconductor were used to perform 
GO enrichment analysis, while the packages 
ClusterProfiler, colorspace, enrichplot, ggplot2, DOSE 
and stringi were used to perform the KEGG pathway 
enrichment analysis. Both p-values and FDR values 
were statistically significant at less than 0.05. 

PPI network construction and module 
screening 

We submitted the differently expressed RBPs to 
the STRING database (http://www.string-db.org/) 
to acquire protein-protein interaction information, 
and we then used Cytoscape 3.7.0 to construct the PPI 
network and visualize it. The screening standard was 
P≤ 0.05. 

Prognostic model construction 
The survival and glmnet R packages were used 

to perform Univariate Cox regression analysis and 
multiple stepwise Cox regression to construct a risk 
score model. The risk score formula was as follows: 

 Risk score = β1*Exp1+ β2*Exp2 …+βi*Expi 

β represents the coefficient value. Exp represents 
the expression of RBPs. The survival ROC R package 
was used to evaluate the prognostic capability of the 
above model. The rms R package was used to 
construct the nomogram. The screening standard was 
P≤ 0.05. 

Verification of prognostic significance 
Gene Expression Profiling Interactive Analysis 

(GEPIA) (http://gepia.cancer-pku.cn/) database was 
used to perform survival analysis. 

Gene set enrichment analysis (GSEA) 
C2 KEGG gene sets from the Molecular 

Signatures Database (MSigDB) were used to perform 
GSEA analysis. The permutation number and 
recompute time set were both set at 1000. The results 
should meet our screening criteria (P < 0.05). 

Statistical analysis 
The median risk score in each data set was used 

as a cutoff to compare survival risk between high-risk 
and low-risk groups, a Kaplan-Meier (KM) curve was 
drawn. Multivariate Cox regression analysis was used 
to test whether gene markers were independent 
prognostic factors. Significance was defined as P < 
0.05. All analyses were performed using R 3.4.3. 

Results 
Identification of differently expressed RBPs in 
RCC patients 

In this study, we utilized several advanced 
methods to identify the key prognosis‐related RBPs in 
RCC patients. The study design was illustrated in 
Figure 1. The data on RNA sequencing for RCC and 
corresponding clinical information was sourced from 
TCGA, with a total of 611 samples: 539 RCC samples 
and 72 normal renal tissue samples. We used R 
software packages to analyze the data and select the 
differently expressed RBPs. We totally analyzed 1542 
RBPs [6], and 125 RBPs met our screening criteria 
(P<0.05, |log2FC)| >1.0), which included 87 
upregulated and 38 downregulated RBPs. The 
expression distribution of these differently expressed 
RBPs is shown in Figure 2. 
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Figure 1. Whole procedures for analyzing RBPs in RCC. 

 

GO and KEGG pathway enrichment analyses 
of the differently expressed RBPs  

According to their different expression levels, we 
divided these RBPs into two groups (upregulated or 
downregulated expression) to explore their function 
and the underlying mechanisms. To assess GO and 
KEGG pathway enrichment, various R software 
packages were used to analyze the selected differently 
expressed RBPs. The results showed that, in biological 
processes, the upregulated RBPs were notably 
enriched in RNA splicing, response to viruses, RNA 
catabolic process and DNA methylation or 
demethylation (Figure 3A). The downregulated RBPs 
were significantly enriched in regulation of mRNA 
metabolic processes, RNA splicing, nucleic acid 
transport and DNA methylation (Figure 3B). When it 
comes to the molecular function, the upregulated 
RBPs were notably enriched in catalytic activity acting 
on RNA, nuclease activity, ribonuclease activity, 

double-stranded RNA binding and endonuclease 
activity (Figure 3A), while the downregulated RBPs 
were significantly enriched in mRNA 3'-UTR binding, 
translation regulator activity, poly(U) RNA binding 
and poly-pyrimidine tract binding (Figure 3B). As for 
the cellular component, we found that the 
upregulated RBPs were mainly enriched in 
ribonucleoprotein granules, nuclear specks, P-bodies 
and spliceosomal complexes (Figure 3A), while the 
downregulated RBPs were mainly enriched in 
mitochondrial matrices, ribonucleoprotein granules, 
chromatoid bodies and P granules (Figure 3B). 
Moreover, we found that the upregulated RBPs were 
mainly enriched in mRNA surveillance pathways, 
Influenza A, RNA transport, spliceosomes and RNA 
degradation (Figure 3C), and the downregulated 
RBPs were mainly enriched in mRNA surveillance 
pathways, sulfur metabolism, ribosome and 
2-oxocarboxylic acid metabolism (Figure 3D). 
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Figure 2. The differently expressed RBPs in RCC. (A) Heat map; (B) Volcano plot. 

 

 
Figure 3. GO and KEGG pathway enrichment analyses of aberrantly expressed RBPs in RCC. (A) GO enrichment analysis of upregulated RBPs; (B) GO enrichment analysis of 
downregulated RBPs; (C) KEGG pathway enrichment analysis of upregulated RBPs; (D) KEGG pathway enrichment analysis of downregulated RBPs. 
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PPI Network Construction and Key Module 
Screening 

To better understand the correlation and 
function of these differently expressed RBPs in RCC 
patients, we built a PPI network by using Cytoscape 
software and the STRING database, which included 
100 nodes and 225 edges (Figure 4A). By using the 
MODE tool in Cytoscape to process the PPI network, 
we obtained the most important module which 
contained 39 nodes and 89 edges (Figure 4B). The 
RBPs in this module were greatly enriched in 
ribosome assembly, cytoplasmic translation, 
regulation of mRNA processing, regulation of RNA 
splicing, piRNA metabolic process, DNA methylation, 
meiotic cell cycle and RNA transcription. 

Prognosis-Related RBP Screening 
From the PPI network, we uncovered 100 

differently expressed RBPs in total. By univariate Cox 
regression analysis, we obtained 30 
prognostic-associated candidate RBPs (Figure 5). 
Then we performed a multiple stepwise Cox 
regression and selected eight hub RBPs to be 
independent predictors in RCC patients (Figure 6). 

Prognosis-Related Genetic Risk Score Model 
Construction and Validation 

First, we randomly divided the RCC patients 
into a train-group and test-group. In the train-group, 
we used the eight hub RBPs selected by the multiple 
stepwise Cox regression to build the predictive 
model. Then we used a formula to calculate the risk 
score of each RCC patient. The formula is as follows: 

Risk score = (0.6724*ExpRPL22L1) + 
(0.4699*ExpRNASE2) + (-1.0050*ExpRNASE3) + 

(0.4695*ExpEZH2) + (1.7092*ExpDDX47) + 
(-0.2978*ExpEXOSC5) + (-1.6594*ExpDDX25) + 

(-0.7605*ExpDQX1) 

In order to evaluate the predictive ability of this 
model, 267 RCC patients were divided into two 
subgroups according to the median risk score. 133 
high-risk patients and 134 low-risk patients were 
analyzed to perform a survival analysis. The results 
showed that the high-risk subgroup had a poorer OS 
than the low-risk subgroup (Figure 7A). Second, we 
conducted a time-dependent ROC analysis to further 
test the prognostic ability of the eight hub RBPs. The 
AUC of the ROC curve was 0.728, indicating a 
moderate clinical prognostic significance (Figure 7B). 
The risk score, survival status of patients and 
expression heat map of the two subgroups are shown 
in Figure 7C. To prove the accuracy of the risk score 
model, we used the data of the test-group to perform 
the same analysis. The result was similar (Figure 
7D-F), suggesting that the risk score model is reliable. 
To explore the relationship of clinical features with 
our predictive model, we then performed a regression 
analysis. Univariate regression analysis indicated age, 
tumor grade, tumor stage and risk score were relevant 
to OS of RCC patients (Figure 8A). Multiple 
regression analysis further showed that age, tumor 
grade, tumor stage and risk score were also 
independent prognostic factors related to OS (Figure 
8B). 

 

 
Figure 4. Protein-protein interaction network and modules analysis. (A) PPI network of differently expressed RBPs; (B) Critical module from PPI network. Green circles: 
downregulation; red circles: upregulation.  
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Figure 5. Univariate Cox regression analysis to identify hub RBPs. 

 

 
Figure 6. Multivariate Cox regression analysis for identification of prognosis-related hub RBPs. 
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Figure 7. Risk score analysis of risk model in train-group and test-group. (A) Survival curve for low- and high-risk subgroups in train-group; (B) ROC curves for forecasting OS 
in train-group; (C) Risk score, expression heat map and survival status in train-group; (D) Survival curve for low- and high-risk subgroups in test-group; (E) ROC curves for 
forecasting OS in test-group; (F) Risk score, expression heat map and survival status in test-group. 

 
Figure 8. (A) Univariate Cox regression analysis for different clinical parameters; (B) Multivariate Cox regression analysis for different clinical parameters. 

 

Construction of a nomogram based on Risk 
Score Model 

In order to find a quantitative method for RCC 
prognosis, we combined the eight-RBPs biomarkers to 
build a nomogram (Figure 9). By calculating the point 
of each variable and taking all points into account, we 
could predict the estimated survival rates for RCC 
patients at one, three, and five years, and the 
nomogram can help us to make clinical decisions for 
RCC patients. To further explore the prognostic value 

of the eight hub RBPs, we performed a survival 
analysis based on the data from the GEPIA database 
to explore the relationship between the hub RBPs and 
OS. The results show that six RBPs (RPL22L1, 
RNASE2, RNASE3, EZH2, DDX25, DQX1) were 
related with the OS (Figure 10). To further explore the 
functions of these selected RBPs, C2 KEGG gene sets 
from the Molecular Signatures Database (MSigDB) 
were used to perform a single gene GSEA analysis. 
The results were shown in Figure 11, DDX47, DDX25, 
DQX1 and RNASE3 are mainly enriched in synthesis 
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and metabolism of glucose, protein and fat. EXOSC5 
is involved in various signaling pathways, such as 
JAK-STAT signaling pathway, MAPK signaling 
pathway and WNT signaling pathway. RNASE2 may 
relate with immunomodulation, such as antigen 
processing and presentation, B cell receptor signaling 
pathway, natural killer cell mediated cytotoxicity and 

T cell receptor signaling pathway. EZH2 was 
significantly enriched in the regulation of cell cycle, 
DNA damage repair, JAK-STAT signaling pathway 
and WNT signaling pathway. While RPL22L1 
regulated propanoate metabolism, fatty acid 
metabolism, adipocytokine signaling pathway and 
insulin signaling pathway. 

 

 
Figure 9. Nomogram for predicting OS of RCC patients. 

 

 
Figure 10. Validation of the prognostic value of hub RBPs in RCC patients by Kaplan Meier-plotter. 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

961 

 
Figure 11. GSEA analysis of eight hub RBPs with C2 KEGG gene sets. 

 

Discussion 
The dysregulated expression of RBPs has been 

reported to play a pivotal role in tumor carcinogenesis 

and progression in many malignant tumors [19]. 
However, the underlying mechanisms are still unclear 
[19]. In our study, we downloaded the information of 
RCC patients from TCGA. Though bioinformatics 
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analysis, we selected 125 differently expressed RBPs 
in RCC between tumor and normal tissue, and we 
performed a detailed and systematic analysis to 
explore their functions and pathway enrichment. 
Moreover, we built a co-expression network and PPI 
network of these differently expressed RBPs. Then, by 
univariate Cox regression analysis and multiple 
stepwise Cox regression, we identified eight hub 
RBPs and constructed a risk model to predict 
prognosis. To verify and further explore the 
prognostic value of our model and expression of hub 
RBPs, we performed ROC analysis, risk score, 
survival status of patients, expression heat map and 
survival analysis. Our findings helped us to establish 
potential biomarkers for RCC patients’ diagnosis and 
prognosis. 

GO enrichment analysis showed that the 
differently expressed RBPs were greatly enriched in 
regulation of mRNA metabolic processes, RNA 
splicing, nucleic acid transport, RNA catabolic 
processes and DNA methylation. Previous studies 
have showed that RBPs can regulate the occurrence 
and development of many diseases via 
post-transcriptional gene regulation [20-22]. The 
KEGG pathways analysis showed that the 
dysregulated RBPs were mainly enriched in mRNA 
surveillance pathways, RNA transport, spliceosome 
and RNA degradation. 

Subsequently, we constructed a co-expression 
network and PPI network and selected 100 key RBPs, 
which play a key role in the disease progression. 
Among these key RBPs, many of them have been 
studied and found to play the important roles in the 
development and progression of other tumors via 
regulating the expression of oncoproteins and 
tumor-suppressor proteins [19]. Moreover, we used 
the MODE tool in Cytoscape to get important 
subnetworks. The results showed that these modules 
were greatly enriched in the regulation of mRNA 
processing, RNA splicing, piRNA metabolic 
processes, DNA methylation and RNA transcription.  

Additionally, via univariate Cox regression 
analysis, survival analyses, and multiple Cox 
regression analysis, we identified eight hub RBPs 
(RPL22L1, RNASE2, RNASE3, EZH2, DDX25, DQX1, 
EXOSC5, DDX47) and built a risk model to predict 
prognosis of RCC. The ROC curve analysis showed 
that our model is significant and sensitive, and it will 
be of value to guide treatment and prognosis for RCC 
patients. These eight RBPs function either as 
oncogenes or tumor-suppressor genes in cancers. 
Through regulating the expression of MGMT and 
MLH1, RPL22L1 can affect tumor progression and 
chemotherapeutic drug resistance [23] RNASE2 and 
RNASE3 are mainly involved in human immune 

function, and RNASE2 plays an important role in 
sensing of pathogens by toll-like receptor 8 (TL8) [24]. 
Hence, researchers have identified that combination 
analysis of RNASE2 with other 6 immune-related 
genes has prognostic value in ccRCC [25]. EZH2, the 
core enzymatic subunits of PRC2, plays a pivotal role 
in tumor carcinogenesis and progression via 
modulating many pro-oncogenic and pro-survival 
signaling pathways [26]. Moreover, the expression of 
EZH2 significantly increases in RCC tissue than that 
in normal tissue associated with a poor outcome, and 
EZH2 promotes sunitinib resistance in RCC through 
kinome reprogramming [27]. DDX47 is involved in 
maintenance of genome stability via interacting with 
FANCD2 to lower R-loop levels [28], and study has 
revealed that overexpression of DDX47 induces tumor 
cells apoptosis [29]. DQX1, acting as the 
methylation-driven genes, is a novel prognostic 
marker in lung squamous cell carcinoma [30]. 
EXOSC5 could promotes growth of colorectal cancer 
through regulating ERK and AKT pathways [31]. 
Collectively, the studies of these eight RBPs in RCC 
are rare, and the underlying molecular mechanism is 
still obscure and deserves further exploration.  

Overall, our risk model only needs to detect 
eight hub genes, and it is economical and acceptable 
for RCC patients. Our analysis also showed that the 
eight hub RBPs have their own important biological 
functions and are associated with patients’ prognoses, 
indicating that they have potential to be used for 
clinical assistance treatment. However, our study did 
of course have several limitations. First, our data only 
comes from TCGA database, and is not validated in 
clinical patient cohorts. Second, our data is only based 
on RNA sequencing without verification via other 
omics data platforms. Lastly, the loss of some clinical 
information reduces the accuracy of multivariate 
stepwise Cox regression analysis. 

In summary, we have systemically analyzed the 
expression and function of RBPs in RCC patients and 
acquired the diagnostic model and independent 
prognostic factor for RCC patients. To our knowledge, 
this is the first report on the RBP prognosis-associated 
model for RCC patients, and our study shows that 
RBPs could be prognostic markers as well as new 
targets for RCC patients. 

Acknowledgments 
We are grateful to Dr. Michael Strickland 

(University of California, Los Angeles) for reading an 
initial draft of this paper. This study was supported 
by the National Natural Science Foundation of China 
(No. 81572515, 81472395 and 81672522). 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

963 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020; 

70: 7-30. 
2. Gross-Goupil M, Kwon TG, Eto M et al. Axitinib versus placebo as an adjuvant 

treatment of renal cell carcinoma: results from the phase III, randomized 
ATLAS trial. Ann Oncol. 2018; 29: 2371-8. 

3. Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney 
cancer. Nat Rev Urol. 2010; 7: 245-57. 

4. Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and 
future directions. CA Cancer J Clin. 2017; 67: 507-24. 

5. Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906. 
6. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. 

Nat Rev Genet 2014; 15: 829-45. 
7. Duan Y, Du A, Gu J et al. PARylation regulates stress granule dynamics, phase 

separation, and neurotoxicity of disease-related RNA-binding proteins. Cell 
Res. 2019; 29: 233-47. 

8. Masuda K, Kuwano Y. Diverse roles of RNA-binding proteins in cancer traits 
and their implications in gastrointestinal cancers. Wiley Interdiscip Rev RNA. 
2019; 10: e1520. 

9. Wang E, Lu SX, Pastore A et al. Targeting an RNA-Binding Protein Network in 
Acute Myeloid Leukemia. Cancer Cell 2019; 35: 369-84.e7. 

10. Apponi LH, Corbett AH, Pavlath GK. RNA-binding proteins and gene 
regulation in myogenesis. Trends Pharmacol Sci. 2011; 32: 652-8. 

11. Miles WO, Lembo A, Volorio A et al. Alternative Polyadenylation in 
Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO 
Posttranscriptional Regulation. Cancer Res. 2016; 76: 7231-41. 

12. Nguyen LH, Robinton DA, Seligson MT et al. Lin28b is sufficient to drive liver 
cancer and necessary for its maintenance in murine models. Cancer Cell 2014; 
26: 248-61. 

13. Mongroo PS, Noubissi FK, Cuatrecasas M et al. IMP-1 displays cross-talk with 
K-Ras and modulates colon cancer cell survival through the novel 
proapoptotic protein CYFIP2. Cancer Res. 2011; 71: 2172-82. 

14. Kato T, Hayama S, Yamabuki T et al. Increased expression of insulin-like 
growth factor-II messenger RNA-binding protein 1 is associated with tumor 
progression in patients with lung cancer. Clin Cancer Res. 2007; 13: 434-42. 

15. Hopkins TG, Mura M, Al-Ashtal HA et al. The RNA-binding protein LARP1 is 
a post-transcriptional regulator of survival and tumorigenesis in ovarian 
cancer. Nucleic Acids Res. 2016; 44: 1227-46. 

16. Vo DT, Abdelmohsen K, Martindale JL et al. The oncogenic RNA-binding 
protein Musashi1 is regulated by HuR via mRNA translation and stability in 
glioblastoma cells. Mol Cancer Res. 2012; 10: 143-55. 

17. Janiszewska M, Suvà ML, Riggi N et al. Imp2 controls oxidative 
phosphorylation and is crucial for preserving glioblastoma cancer stem cells. 
Genes Dev. 2012; 26: 1926-44. 

18. Miles WO, Tschöp K, Herr A, Ji JY, Dyson NJ. Pumilio facilitates miRNA 
regulation of the E2F3 oncogene. Genes Dev. 2012; 26: 356-68. 

19. Pereira B, Billaud M, Almeida R. RNA-Binding Proteins in Cancer: Old Players 
and New Actors. Trends Cancer 2017; 3: 506-28. 

20. Jain A, Brown SZ, Thomsett HL, Londin E, Brody JR. Evaluation of 
Post-transcriptional Gene Regulation in Pancreatic Cancer Cells: Studying 
RNA Binding Proteins and Their mRNA Targets. Methods Mol Biol. 2019; 
1882: 239-52. 

21. Siang D, Lim YC, Kyaw A et al. The RNA-binding protein HuR is a negative 
regulator in adipogenesis. Nat Commun. 2020; 11: 213. 

22. Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. 
Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates 
regulation of translation and deadenylation. Science 2019; 365: 825-9. 

23. Rao S, Peri S, Hoffmann J et al. RPL22L1 induction in colorectal cancer is 
associated with poor prognosis and 5-FU resistance. PLoS One 2019; 14: 
e0222392. 

24. Ostendorf T, Zillinger T, Andryka K et al. Immune Sensing of Synthetic, 
Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated 
Processing by RNase T2 and RNase 2. Immunity 2020; 52: 591-605.e6. 

25. Wan B, Liu B, Huang Y, Yu G, Lv C. Prognostic value of immune-related genes 
in clear cell renal cell carcinoma. Aging (Albany NY) 2019; 11: 11474-89. 

26. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016; 22: 128-34. 
27. Adelaiye-Ogala R, Budka J, Damayanti NP et al. EZH2 Modifies Sunitinib 

Resistance in Renal Cell Carcinoma by Kinome Reprogramming. Cancer Res. 
2017; 77: 6651-66. 

28. Okamoto Y, Abe M, Itaya A et al. FANCD2 protects genome stability by 
recruiting RNA processing enzymes to resolve R-loops during mild 
replication stress. FEBS J. 2019; 286: 139-50. 

29. Lee JH, Rho SB, Chun T. GABAA receptor-associated protein (GABARAP) 
induces apoptosis by interacting with DEAD (Asp-Glu-Ala-Asp/His) box 
polypeptide 47 (DDX 47). Biotechnol Lett. 2005; 27: 623-8. 

30. Li R, Yin YH, Jin J et al. Integrative analysis of DNA methylation-driven genes 
for the prognosis of lung squamous cell carcinoma using MethylMix. Int J Med 
Sci. 2020; 17: 773-86. 

31. Pan H, Pan J, Song S, Ji L, Lv H, Yang Z. EXOSC5 as a Novel Prognostic 
Marker Promotes Proliferation of Colorectal Cancer via Activating the ERK 
and AKT Pathways. Front Oncol. 2019; 9: 643. 

 


