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Abstract 

Chronic kidney disease (CKD) is a global public health problem associated with high rates of morbidity 
and mortality due to end-stage renal disease and cardiovascular disease. Safe and effective medications to 
reverse or stabilize renal function in patients with CKD are lacking, and hence it is important to identify 
modifiable risk factors associated with worsening kidney function. Environmental pollutants, including 
metals, air pollutant, phthalate and melamine can potentially increase the risk of CKD or accelerate its 
progression. In this review, we discuss the epidemiological evidence for the association between 
environmental pollution and kidney disease, including heavy metals, air pollution and other environmental 
nephrotoxicants in the general population. 
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Introduction 
Chronic kidney disease (CKD) is a global public 

health issue [1-3]. The reported prevalence of CKD is 
11.9% in Taiwan [4], and it has gradually increased 
over the past decade resulting in a large economic 
burden on the National Health Insurance program. 
CKD is defined as either a reduced glomerular 
filtration rate (GFR < 60 mL/min/1.73 m2) or 
evidence of kidney damage such as an abnormal 
pathology or albuminuria for at least 3 months. CKD 
is one of the ten leading causes of death in Taiwan, 
and these patients have a higher risk of progression to 
dialysis and cardiovascular mortality. According to 
the US Renal Data System [5], the prevalence and 
incidence of CKD and end-stage renal disease (ESRD) 
in Taiwan are among the highest in the world. 

The pathophysiology and mechanisms of 
worsening renal function are complex and 
multifactorial. In addition to the well-known risk 
factors for renal injury, such as aging, diabetes 
mellitus and hypertension, some environmental 

chemicals have also been shown to be important risk 
factors for renal injury [6-10]. With the ever increasing 
use of synthetic compounds in all aspects of daily life, 
the risk to health of environmental toxins and 
pollutants becomes increasingly important. In 
particular, as the kidneys are responsible for excreting 
waste products from the body they are exposed to 
toxins and pollutants in the blood, and they are 
therefore susceptible to the adverse effects stemming 
from this exposure.  

In this review, we summarize the current data 
regarding environmental exposure to toxins and 
pollutants and kidney disease. Environmental 
nephrotoxicants can be classified as follows: (1) 
metals, (2) air pollution, and (3) other non-metal 
exposure. We searched the PubMed 
(http://www.ncbi.nlm.nih.gov/pubmed) database to 
find published studies from January 1988 to June 2020 
that investigated the relationships between 
environmental exposure to toxins and pollutants and 
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CKD and/or markers of kidney injury. We performed 
the search using the following terms: ‘environmental 
pollution and chronic kidney disease’, ‘environmental 
pollution and proteinuria’, ‘environmental pollution 
and albuminuria’, ‘environmental exposure and 
chronic kidney disease’, ‘environmental exposure and 
proteinuria’, ‘environmental exposure and 
albuminuria’, ‘air pollution and chronic kidney 
disease’ , ‘air pollution and proteinuria’, ‘air pollution 
and albuminuria, ‘metals and chronic kidney disease’, 
‘metals and proteinuria’, ‘metals and albuminuria’. 
The search was limited to research articles involving 
humans and those published in English. Unpublished 
data and abstracts were not included in this review. 

Metals 
Metals are common environmental pollutants 

that have been associated with impaired kidney 
function in many epidemiological studies. Metals 
used in industrial processes have been shown to 
contaminate drinking water, food and soil, thereby 
increasing the risk of exposure among the general 
population. In the following sections, we summarize 
the metals that are known to have a nephrotoxic 
effect, including arsenic, cadmium, lead, mercury and 
uranium. 

Arsenic 
Arsenic (As) is a highly toxic metalloid that 

occurs ubiquitously in the environment [11]. 
Environmental sources of As include contaminated 
drinking water, pesticides, seafood, folk or alternative 
remedies, and products used for wood preservation 
[7]. Acute As-induced renal intoxication has been 
shown to lead to acute tubular necrosis and 
tubulointerstitial nephritis [11, 12]. In addition, 
chronic exposure to As has been associated with the 
development and progression of CKD due to 
As-induced oxidative stress [11, 13]. 

Exposure to As through the environment, 
occupation and diet has been reported to cause renal 
injury and the development of renal disease [11, 14, 
15]. A prospective observational study in Taiwan 
reported that people ingesting ≥ 50 μg/L of As in well 
water had a 30% increased risk of clinically 
recognized CKD compared to ≤ 10 μg/L [16]. In 
addition, a community-based cross-sectional study 
conducted in central Taiwan reported that the risk for 
eGFR < 90 mL/min/1.73 m2 was increased by around 
2-fold in people with a urine As level > 75 μg/g 
creatinine compared to those with a urine As level ≤ 
35 μg/g creatinine [17]. Moreover, Cheng et al. 
conducted another study in Taiwan including 8854 
adults from a nationwide health screening program 
from 2000 to 2009 [18]. They found that > 50 μg/L of 

As in drinking water was associated with an odds 
ratio (OR) of 1.22 (95% confidence interval [CI]: 1.05–
1.42) for the rapid progression of CKD (eGFR decline 
> 5 ml/min/1.73 m2/year). Another cross-sectional 
study conducted in China also found that a plasma As 
concentration > 0.93 μg/L was associated with eGFR 
< 60 mL/min/1.73 m2 [19]. In addition, Liu et al. 
conducted a prospective cohort and reported that a 
plasma As concentration > 3.16 μg/L was 
significantly associated with an annual decline in 
eGFR among Chinese adults [20]. 

Cadmium 
Cadmium (Cd) is known to be nephrotoxic 

environmental pollutant [7, 21]. Cd has a long half-life 
in the body, ranging from 7.4 to 16 years [11, 22]. High 
levels of exposure can result in the accumulation of 
Cd in the proximal tubules of the kidney, and this has 
been shown to impair tubular function and protein 
reabsorption [23]. In the general population, tobacco 
smoking is a main source of Cd exposure [24-26], and 
in non-smokers exposure commonly occurs from 
dietary intake of contaminated food and water [27]. 
Occupational Cd exposure includes battery 
manufacturing, pigments, coatings, plastics, and 
copper and zinc smelting and welding [28]. Urinary 
Cd is considered to be the most accurate measure of 
long-term exposure, whereas blood Cd is considered 
to be a measure of more recent exposure, such as 
exposure within the past month [8]. 

Clinically, Cd nephrotoxicity presents with 
symptoms including low molecular weight 
proteinuria, glucosuria, aminoaciduria, low molecular 
weight proteinuria, hypercalciuria and renal stones 
[8]. Urinary Cd levels of 4–10 μg/g creatinine have 
been associated with increased microalbuminuria 
[29]. Accordingly, the US Occupational Safety and 
Health Administration and World Health 
Organization (WHO) define the safe standard to be a 
urinary Cd concentration of < 3 μg/g and 5.24 μg/g 
creatinine, respectively [30]. Increasing evidence has 
shown that chronic exposure to Cd is associated with 
reduced GFR and an increased risk of CKD [31]. Two 
cross-sectional studies indicated that urinary Cd was 
significantly positively associated with renal tubule 
biomarkers including N-acetyl-β-D-glucosaminidase 
and β2-microglobulin in the general population in 
China and Korea [32, 33]. In addition, blood Cd 
concentration has been associated with kidney 
function in US adults [34, 35]. Madrigal et al. analyzed 
US National Health and Nutrition Examination 
Survey (NHANES) data from 2007–2012, and 
demonstrated that blood Cd concentration was 
positively associated with elevated albumin excretion 
in urine and inversely associated with eGFR. In their 
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study, a stronger association was found between 
impaired kidney function and blood Cd concentration 
in the female participants compared to the male 
participants, and the association also differed 
according to hypertension [36]. These findings are 
consistent with two studies using Korean NHANES 
[37, 38]. 

Lead 
Lead (Pb) is found throughout the environment, 

primarily due to human activity. Pb compounds are 
commonly used in gasoline, batteries, pipes, 
ammunition, paints, ceramic glazes, water 
contaminated by Pb pipes, food contaminated during 
processing, Pb-adulterated alcohol, and other 
industrial applications [11]. Pb circulates in the blood, 
and it is either excreted by the kidneys or accumulates 
in bone. The half-life of Pb in the blood is around 35 
days, compared to 10-30 years in bone [7].  

Pb is the most common environmental 
nephrotoxicant, and exposure can cause oxidative 
stress in tubular and glomerular cells and lead to the 
generation of free radicals, potentially contributing to 
cellular apoptosis and subsequent changes in renal 
structure and function [39]. Acute Pb toxicity (blood 
Pb level > 80–100 μg/dL) has been reported to cause 
proximal tubular injury, possibly due to cytoplasmic, 
mitochondrial and intranuclear inclusion bodies 
composed of Pb–protein complexes [40], and the 
clinical manifestations include glucosuria, 
aminoaciduria, phosphaturia, and Fanconi syndrome 
[41]. Chronic Pb poisoning (blood Pb level > 60 
μg/dL) has been reported to cause Pb nephropathy, 
which is characterized by glomerular sclerosis, 
tubular atrophy, tubulointerstitial fibrosis, and finally 
reduced GFR [41, 42]. In addition, chronic low Pb 
exposure (blood Pb level < 5-10 mg/dL) has been 
reported to potentially contribute to the development 
of CKD and the progression of established CKD 
[43-45]. The association between body Pb level and 
CKD has also been reported to be affected by age, sex, 
diabetes, hypertension, and uric acid level [46]. 

Two cross-sectional studies analyzed the US 
NHANES from 1999 to 2002 and 1999 to 2006 [35, 47], 
and found that even low blood Pb levels may be 
associated with CKD. In the US NHANES 1999 to 
2002, the prevalence of CKD among adults was found 
to be higher in those with higher blood Pb levels. The 
adjusted ORs of prevalent CKD increased with 
increasing quartiles of blood Pb level (Q1 < 1.06 
mg/dL, Q2 = 1.06-1.63 mg/dL, Q3 = 1.63-2.7 mg/dL, 
Q4 ≥ 2.47 mg/dL) (OR = 1.49, 95% CI = 0.75-2.98; OR = 
1.89, 95% CI = 1.09-3.30; and OR = 2.72, 95% CI = 
1.47-5.04, respectively, for the second, third, and 
fourth quartiles) [47]. Another analysis of the US 

NHANES 1999 to 2006 reported that among adults 
with a blood Pb level > 2.4 mg/dL, the OR for 
prevalent CKD was 1.56 (95% CI = 1.17-2.08) 
compared to adults with a blood Pb level ≤ 1.1 mg/dL 
[35]. In addition, a NHANES from 2007 to 2012 
demonstrated that a positive association between 
urine Pb level and an inverse association between 
blood Pb level and eGFR [34]. Similarly, a 
cross-sectional study of Korean adults reported a 
positive association between blood Pb levels and renal 
dysfunction [48]. 

An increasing number of longitudinal studies 
have supported that Pb exposure contributes to an 
increased risk of kidney disease. Yu et al. explored the 
association between low-level environmental Pb 
exposure and renal function among 121 patients with 
non-diabetic CKD in Taiwan [49]. After 4 years, every 
increase of 1 mg/dL in blood Pb level at baseline was 
associated with a decrease in GFR of 4.0 mL/min/1.73 
m2 [49]. In addition, a prospective population-based 
study conducted in Sweden investigated the 
association between low levels of Pb exposure and 
kidney function among 2567 participants who 
completed follow-up [50]. Their results showed that 
the change in eGFR was higher in the participants in 
the third and fourth quartiles of blood Pb level 
(median concentrations of 29 and 46 μg/L, 
respectively) compared to those in the lowest 
quartiles [50]. Moreover, the participants in the 
highest quartile of blood Pb level had a 49% increased 
risk of incident CKD compared to those in the three 
lower quartiles [50]. 

Several studies have explored the relationship 
between environmental Pb exposure and 
nephrolithiasis. Hara et al. recruited 1302 Flemish 
participants and reported that environmental Pb 
exposure was a risk factor for nephrolithiasis [51]. In 
addition, a study of participants from five consecutive 
US NHANES 2-year cycles (2007–2016) showed that 
blood Pb level was associated with the risk of kidney 
stones in adults [52]. 

Mercury 
Exposure to mercury (Hg) compounds occurs 

via occupational, dietary and environmental sources, 
including contaminated water, fresh water fish from a 
contaminated source, predatory ocean fish, gold 
mining, smelting, burning fuel, incineration and 
whitening creams [7, 53]. Hg exists in elemental, 
inorganic, and organic forms, all of which are 
nephrotoxic [11]. Hg exposure occurs through oral, 
inhalation, and dermal routes, however the most 
common route is through the consumption of foods 
contaminated with Hg including seafood [8]. 

Hg readily accumulates in the kidneys and can 
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contribute to both tubular and glomerular damage 
[54, 55]. The pars recta of proximal tubules has been 
reported to be most sensitive to Hg, and it is usually 
the first nephron segment to be affected by exposure 
to Hg compounds [56]. After filtration, Hg is 
reabsorbed by the proximal tubules, resulting in 
tubular toxicity presenting as low molecular weight 
proteinuria and enzymuria. Hg has been associated 
with CKD progression [44, 57, 58]. In addition, clinical 
reports have suggested that Hg exposure can cause 
various renal manifestations including membranous 
glomerulopathy, interstitial nephritis, acute tubular 
necrosis and interstitial nephritis, or a minimal change 
in disease with nephrotic syndrome [59]. In a study of 
adults in the US NHANES 2003-2004, Lin et al. 
reported a higher adjusted OR of reduced GFR (< 60 
mL/min/1.73 m2) with increasing tertiles of blood Hg 
level (OR = 2.09 [95% CI = 1.11-3.96] and 2.94 [95% CI 
= 1.04-8.33] for tertile 2 [blood Hg level 0.66-1.64 
mg/L] and tertile 3 [blood Hg level > 1.64 mg/L], 
respectively), compared with the lowest tertile (blood 
Hg < 0.66 mg/L). In addition, Nuyts et al. conducted a 
case–control study of occupational exposure to Hg in 
272 patients with CKD and 272 controls matched for 
age, sex and area of residence, and found that Hg 
exposure was independently associated with an 
increased risk of CKD (OR = 5.13, 95% CI= 1.02–25.7) 
[60] However, a recent study of artisanal gold miners 
who were exposed to Hg vapor did not find an 
association between increased urinary Hg 
concentration and reduced eGFR [61]. Kim et al. 
conducted a cross-sectional study of the Korean 
NHANES from 2008–2010, and reported that blood 
Hg levels, which reflect organic Hg exposure rather 
than inorganic Hg exposure, did not show a 
significant inverse association with eGFR after 
adjustments [48]. 

Uranium 
Environmental exposure to uranium (U) is 

mainly through the ingestion of contaminated 
groundwater, soil, and food [6]. Occupational 
exposure also may occur through inhalation. U 
toxicity primarily occurs in the kidneys. Complexed U 
dissociates at a lower pH to release the reactive uranyl 
ion, which can interact with proximal tubule 
membranes. Urine is the primary means of 
quantifying exposure to U as most absorbed U is 
excreted in the urine within several weeks [8]. The 
most frequently used standard for U kidney burden is 
the International Commission on Radiological 
Protection value of 3 μg/g [62]. 

Oral exposure to U from drinking contaminated 
water and occupational exposure have been 
associated with glucosuria, aminoaciduria, microal-

buminuria, β2 microglobulinuria, phosphaturia, and 
hypercalciuria [63-66]. Okaneku et al. demonstrated 
an association between urinary U (median = 0.009 
ug/L) and moderate albuminuria, but no association 
with a decrease in kidney function [65]. Wu et al. 
analyzed 934 hypertensive patients in China and 
found an inverse association between U level and 
eGFR in the overall population, and the association 
was stronger among women with high chromium 
exposure [67]. Several studies have reported an 
association between exposure to U and kidney injury, 
but without statistical significance [68, 69].  

Air pollution 
Particulate matter (PM) is a mixture of 

suspended liquid and solid particles in the air. It is a 
common air pollutant which varies widely in terms of 
size and chemical composition [70]. PM is mostly 
composed of nitrates, sulfates, ammonium, other 
inorganic ions and metals, and may also involve 
biological agents such as allergens and microbial 
substances [71]. The common health-related concerns 
of PM involve particles with a diameter < 10 μm 
(PM10) and 2.5 μm (PM2.5).  

Increasing epidemiologic evidence suggests that 
PM is a risk factor for CKD [72]. Studies in the US 
have reported that PM air pollution leads to a decline 
in GFR and is associated with the prevalence and 
incidence of CKD [73-76] Studies in Taiwanese and 
Korean adults have also observed associations 
between higher PM air pollution levels and reduced 
renal function, an increased risk of developing CKD, 
and the incidence of nephrotic syndrome [77-79]. In 
addition, Mehta et al. investigated the association 
between longitudinal changes in eGFR and long-term 
exposure to PM2.5 in 669 older men. Their results 
showed that a 2.1 μg/m3 interquartile range higher 
1-year exposure to PM2.5 was associated with a 1.87 
mL/min/1.73 m2 lower eGFR and an additional 
annual decrease in eGFR of 0.60 mL/min/1.73 m2 per 
year [76]. Moreover, Chan et al. conducted a study 
from 2001-2014 with 100,629 Taiwanese residents 
without CKD aged > 20 years, and found that every 10 
μg/m3 increase in PM2.5 concentration was 
associated with a 6% increased risk of developing 
CKD (hazard ratio = 1.06, 95% CI = 1.02,1.10) [77]. 

Few studies have examined the association 
between PM and the progression of CKD in patients 
with kidney damage [74, 80]. Bowe et al. 
demonstrated a significant association between PM2.5 
concentration and the risk of developing kidney 
disease and progression to ESRD in an observational 
cohort of 2,482,737 US veterans [74]. Another study 
from Hong Kong reported a positive association 
between annual exposure to PM2.5 and mortality 
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from ischemic heart disease among older patients 
with CKD [80]. In addition, a nationwide, multicenter, 
prospective cohort of Korean ESRD patients indicated 
that increased exposure to PM10 from 1 to 7 years 
increased the risk of mortality, and that long-term 
exposure to NO2 and SO2 was a significant risk factor 
for mortality due to ESRD regardless of the length of 
exposure [81]. Moreover, experimental laboratory 
evidence has shown that exhaust particle exposure 
can lead to changes in hemodynamics in the kidneys, 
induce oxidative stress, inflammation, and DNA 
damage in renal tissues, worsen acute kidney injury, 
and further promote chronic renal injury in murine 
models [82, 83]. 

In summary, experimental and clinical findings 
indicate the biologic plausibility and support the 
hypothesis that environmental exposure to elevated 
levels of PM2.5 is associated with an increased risk of 
kidney disease. More evidence from a variety of 
regions and populations is needed to clarify the 
effects of PM on renal health. These findings support 
the global strategy to reduce air pollution and prevent 
the development of CKD. 

Other non-metals 
Phthalates  

In 2011, a major health scandal involving 
phthalate-tainted foodstuffs occurred in Taiwan 
[84-90]. Phthalates, and mainly di-(2-ethylhexyl) 
phthalate (DEHP) and/or di-isononyl phthalate 
(DINP) were intentionally added to foodstuffs as a 
substitute for emulsifiers, particularly in nutrient 
supplements and probiotics regularly taken by 
children [84-90]. In addition, phthalates are 
commonly added to cosmetics as a solvent for 
fragrance and to many other commonly used 
products such as paint, toys, and medical devices to 
make them soft and flexible. Another main source of 
exposure to phthalates in the general population is 
from plastic containers or plastic bags exposed to high 
temperatures, and the use of plastic materials during 
food production [91, 92]. Therefore, humans are 
potentially exposed to phthalates via inhalation, 
absorption through the skin, or ingesting food.  

Recent studies have investigated the relationship 
between phthalate exposure and renal function 
including early renal injury markers such as urine 
albumin/creatinine ratio and urinary β2-microglo-
bulin (β2M) in different populations. Trasande and 
colleagues investigated the relationship between 
exposure to phthalates and renal function in 667 
children aged 6-19 years who participated in the 
2009-2010 NHANES by measuring metabolites in 
their urine [93]. They found that certain metabolites of 

high molecular weight phthalates such as DEHP in 
urine were significantly and positively associated 
with urine albumin to creatinine ratio (ACR), which is 
regarded to be a clinical marker of glomerular injury. 
After the scandal of phthalate-tainted foodstuffs in 
Taiwan, Tsai et al. reported a possible association 
between DEHP and an increase in microalbuminuria 
in children who consumed higher amounts of foods 
contaminated with phthalates [88]. Chen et al. also 
reported associations between some DEHP 
metabolites and benzyl butyl phthalate and impaired 
renal function in 1663 adults in the 2012 Shanghai 
Food Consumption Survey [94]. The same authors 
used principal component analysis to examine 
associations between the patterns of exposure and 
impaired renal function, and found positive 
associations between high molecular weight phthalate 
pattern score and renal function parameters (ACR, 
β2M, and N-acetyl b-D-glucosaminidase [NAG]), 
which is consistent with the results of single 
metabolite analyses [95]. In addition, a study of 
healthy Korean female adults revealed a significant 
positive association between exposure to 
mono-n-butyl phthalate (MnBP) and urine ACR with 
a dose-response relationship [96]. In addition, a 
cross-sectional study of Italian patients with diabetes 
mellitus revealed an association between exposure to 
DEHP metabolites including mono-(2-ethylhexyl) 
phthalate (MEHP) and mono-(2-ethyl-5-oxohexyl) 
phthalate (MEOHP) and the degree of albuminuria, 
however no association with eGFR was noted [97]. In 
contrast, Malits et al. used a cross-sectional study 
design to compare the Chronic Kidney Disease in 
Children Study and NHANES 2007-2008, and found 
that children aged 1 to 17 years with CKD had not 
been exposed to increased levels of phthalates [98]. In 
summary, several cross-sectional studies have 
suggested that phthalates may be associated with 
renal injury markers. Further longitudinal research is 
needed to clarify the causal relationship.  

Melamine 
Melamine is a synthetic organic base used in 

many commercial products including dry erases 
boards, cleaning supplies, and other plastic goods. 
Despite the 2008 melamine baby formula scandal in 
China which resulted in kidney-related disease in 
children [99], melamine is still widely present in the 
environment and is detected in most urine samples 
obtained from the general populations of the USA and 
Taiwan [100, 101]. A series of epidemiological studies 
support the hypothesis that long-term environmental 
exposure to low-dose melamine can increase the risk 
of adverse kidney outcomes, including urolithiasis, 
early renal damage, and the deterioration of kidney 
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function in adults [102-106]. Liu et al reported that 
chronic low-dose melamine exposure was associated 
with an increase in the risk of calcium urolithiasis 
formation in Taiwanese adults [102, 103], and urinary 
melamine has been significantly associated with NAG 
in urolithiasis patients, especially those with a first 
stone episode [105]. In addition, Wu et al. reported a 
positive association between urinary melamine levels 
and urinary NAG levels, and that the detectable rate 
of β2M was increased in workers in melamine 
tableware manufacturing factories [104]. Moreover, 
Tsai et al. conducted a prospective cohort study 
including patients with an eGFR ≥ 30 ml/min/1.73 m2 
from 2006 to 2010 in Taiwan, and found that urinary 
melamine level was significantly associated with 
deterioration in kidney function in patients with 
early-stage CKD [106]. Furthermore, Jianqiu et al. 
analyzed associations between melamine and 
cyanuric acid exposure and markers of kidney 
function in adults from the NHANES 2003–2004 [107]. 
They found that adults who had exposed to high 
levels of melamine had a lower eGFR than those who 
had been exposed to low levels of melamine, although 
there were no significant associations between 
melamine and cyanuric acid exposure and markers of 
kidney function [107]. In addition, a cross-sectional 
study of 109 children (aged 4 months to 8 years) in the 
USA suggested that cyanuric acid, which is a 
structural analogue of melamine, was associated with 
increased kidney injury molecule-1 (KIM 1) 
concentrations [108]. 

Melamine has been shown to crystallize in distal 
renal tubules, and this may explain the reported cases 
of nephrolithiasis and acute kidney injury. It has also 
been hypothesized that melamine-induced oxidative 
stress contributes to renal tubular injury [109, 110]. 
Further prospective cohort studies are needed to 
clarify the causal effect of environmental low-dose 
melamine exposure and adverse kidney outcomes in 
patients with stones and the detailed mechanisms 
leading to the adverse effects. 

Bisphenol A  
Bisphenol A (BPA) is a synthetic chemical 

comprised of two phenol rings connected by a methyl 
bridge, to which two methyl groups are attached. 
Environmental BPA exposure can occur via 
absorption through the skin, ingestion and 
respiration, and detectable levels of BPA have been 
reported in the urine of >93% of adults [111], with 
high serum levels among men and smokers [112].  

Previous studies have reported inconsistent 
associations between BPA and kidney function. 
Urinary BPA levels have been positively associated 
with ACR among US children [113] and Chinese 

adults [114]. In addition, a positive association 
between urinary BPA levels and eGFR was found 
among a general population of US adult females, but 
not in adult males who participated in NHANES 
2003–2006 [115]. In contrast, no associations between 
urinary BPA and eGFR or urine protein to creatinine 
ratio (PCR) or urine ACR were found among US 
children with CKD [98] and Korean healthy women 
[96]. Positive associations between serum BPA level 
and CKD have been reported in several prospective 
studies of patients with type 2 diabetes [116, 117]. 
Different characteristics of the studied populations 
among these published studies may at least partially 
explain the discrepancies in the findings. 

Conclusion 
Environmental pollutants including heavy 

metals, PM, and other chemicals such as phthalates, 
melamine and BPA are important factors in the 
etiology of CKD, especially in developing countries in 
which environmental pollution is prevalent. The 
pathogenic mechanisms by which most 
environmental nephrotoxicants induce CKD have 
been elucidated. Most studies on the pathogenic 
mechanisms of environmental pollutants have 
focused on systemic inflammation and oxidative 
stress, and the detailed mechanisms of the 
pathogenesis of specific kidney diseases are still not 
fully understood. Studying interactions between 
environment pollutants and genetic factors may help 
to elucidate disease susceptibility. 

Most of the epidemiological evidence regarding 
the association between environmental pollution and 
kidney diseases discussed in this study comes from 
cross-sectional studies. To establish causal 
relationships and dose-response associations between 
exposure to environment pollutants and kidney 
disease for a wide range of exposure levels, more 
detailed longitudinal studies and also experimental 
designs with specific and quantified measurements of 
environmental exposure are required. It is crucial to 
implement environmental protection strategies and 
establish safe exposure levels of environmental 
pollutants, such as air quality standards. In summary, 
our findings support the need for regulatory 
strategies for the control of pollution and reduction or 
prevention of exposure to environmental health risks. 
Clinicians should be aware of the adverse renal effects 
induced by environmental exposure to pollutants. 
Detailed exposure assessments based on the sources 
of exposure for potential nephrotoxicants should be 
performed on a patient-by-patients basis. 
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