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Abstract 

Chronic airway diseases are characterized by airway inflammation, obstruction, and remodeling and show 
high prevalence, especially in developing countries. Among them, asthma and chronic obstructive 
pulmonary disease (COPD) show the highest morbidity and socioeconomic burden worldwide. Although 
there are extensive guidelines for the prevention, early diagnosis, and rational treatment of these lifelong 
diseases, their value in precision medicine is very limited. Artificial intelligence (AI) and machine learning 
(ML) techniques have emerged as effective methods for mining and integrating large-scale, heterogeneous 
medical data for clinical practice, and several AI and ML methods have recently been applied to asthma 
and COPD. However, very few methods have significantly contributed to clinical practice. Here, we 
review four aspects of AI and ML implementation in asthma and COPD to summarize existing knowledge 
and indicate future steps required for the safe and effective application of AI and ML tools by clinicians. 

Key words: artificial intelligence; machine learning; chronic airway diseases; asthma; chronic obstructive 
pulmonary disease 

Introduction 
Recent developments in computer operations 

and the rapid development of “big data” have 
significantly advanced artificial intelligence (AI) and 
machine learning (ML) technology and their 
applications in various fields such as medicine [1]. 
Medical data are difficult to capture, manage, and 
process using conventional tools in a timely manner 
because the datasets are huge, they are frequently 
updated, and the data come in diverse formats. 
Instead, imaging, genomic, proteomic and electronic 
health records (EHRs) data can be mined using AI/ 
ML to extract new knowledge [2]. This development 
has led to rapid changes in the use of AI/ML in 
medicine, especially in medical imaging [3], where the 
techniques are used not only for rapid disease 
screening, but also to improve diagnostic accuracy 

and work efficiency [4]. Genomic data are another 
enormous source of complex medical information that 
has recently emerged. Recent studies have 
demonstrated that the systematic analysis of genomic 
data with AI/ML technology can favor precision 
medicine for the benefit of patients [5, 6]. Although 
the most widely used AI/ML technology in 
respiratory diseases is chest imaging, especially for 
the screening and diagnosis of lung nodules, the 
application of AI/ML tools in chronic airway diseases 
is attracting increasing attention [7, 8]. 

Chronic airway diseases, such as asthma, chronic 
obstructive pulmonary disease (COPD) and 
bronchiectasis, are lifelong and life-threatening 
pathological conditions that extensively affect people 
of all ages, races, and sex worldwide [9]. These 
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diseases are characterized by airway inflammation, 
obstruction, and remodeling, and common symptoms 
include cough, sputum, and shortness of breath. Their 
etiology and pathogenesis are complex and not yet 
fully understood [10, 11]. Patients with chronic airway 
diseases are also prone to relapse, increasing their risk 
of hospitalization and death, and seriously affecting 
their quality of life. Among these diseases, asthma 
and COPD lead to the highest morbidity and 
socioeconomic burden worldwide [12]. Despite 
extensive efforts, identifying, treating and managing 
both disorders still face many challenges, such as 
under- and overdiagnosis, unclear pathogenesis, lack 
of uniform classification criteria for phenotypes, and 
high risk of death and high costs associated with 
exacerbations [13]. In addition, several AI/ML 
methods have recently been applied for both diseases, 
but only a few have significantly contributed to 
clinical practice. Thus, summarizing existing 
knowledge and indicating future directions is 
required for the safe and effective application of 
AI/ML tools by clinicians. Here, we systematically 
review the application of AI/ML technology to four 
different aspects of asthma and COPD: screening and 
diagnosis, classification and assessment, management 
and monitoring, as well as treatment (Figure 1). We 

also present the development of several models based 
on ML algorithms. 

General concepts, terminologies and 
limitations of AI/ML 

In order to facilitate understanding, we quickly 
explain the general concepts and terminologies of 
AI/ML that commonly appeared in this review. In 
addition, we summarize the evaluation indicators and 
current limitations of ML. 

In general, AI refers to the technology that 
represents human intelligence through computer 
programs. ML is a branch of AI technology based on 
statistical techniques for self-learning and the 
development of problem-solving skills. In particular, 
ML uses complex algorithms to analyze large 
amounts of data, identify patterns, make predictions 
that do not require specific codes, and evolve with 
increasing sample size to improve learning. ML 
technology can be divided into supervised, 
semi-supervised, unsupervised and reinforcement 
learning [14, 15] (Figure 2). Supervised learning trains 
ML algorithms to labeled data. These labels, that 
include data types, data attributes and feature point 
locations, are used as expected effects to continuously 
modify the prediction results of the ML model. 

 

 
Figure 1. Structure of the present review. 

 
Figure 2. Categories of machine learning algorithms. 
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Common tasks for supervised learning are regression 
and classification for continuous and categorical 
outcome variables, respectively [15]. Semi-supervised 
learning can fit models to not only labeled data but 
also unlabeled data. When this type of ML algorithm 
classifies unlabeled data, it usually measures the 
distance/similarity between the target sample and all 
labeled samples [16]. Unsupervised learning aims to 
explore and infer potential natural connections and 
groupings from unlabeled data [17]. Reinforcement 
learning, in contrast, is a general term for ML 
approaches that integrate prediction and 
decision-making. This type of ML technology has an 
iterative learning approach, and can self-adapting 
according to the initial feedback [17]. Table 1 and 
Figure 3A introduce and quickly explain common ML 
algorithms reviewed in this article. Based on different 
ML algorithms, several ML models with different 
functions have been developed so far. It is important 
to note that an optimal ML model cannot be easily 
developed with a limited dataset. Instead, a 
satisfactory ML model should be constructed in two 
phases: the model is developed in the training phase 
and then its performance is assessed in the testing 
phase [18] (Figure 3B). 

In order to evaluate the performance of trained 
ML models, several reasonable evaluation indicators 
must be used. Generally, the ML model selects 
different evaluation indicators according to the 
different classification and regression tasks. In 
classification, the evaluation indicators are often 
accuracy, false positive rate, false negative rate, 
sensitivity (recall), specificity, precision, F1-score, 
C-index (concordance index), receiver operating 
characteristic curve and the area underneath it (AUC). 
The regression tasks focus on the difference between 
the predicted and true value. Therefore, the 
evaluation indicators include mean square error, root 
mean square error, mean absolute error, and median 

absolute deviation. 
Although ML technology is continuously 

growing in the medical field, its application is greatly 
limited due to issues related to the availability of 
adequate data (e.g. text, numbers, images), 
experiments and methods, and ethics [14, 15]. 
Inaccurate or missing data can cause serious 
problems, leading to incorrect model structure and 
biased conclusions. The imbalance and sparsity of 
categories in medical data can also limit ML 
application. Therefore, repeated experiments need to 
be performed and different ML methods should be 
explored for addressing medical challenges. 
Experimental design and replication, model selection, 
model generalization, and model interpretability are 
crucial aspects of applying ML techniques [19]. A 
good experimental design can reduce experimental 
errors and give more accurate conclusions. Model 
selection is one process of finding a solution to the 
research problem, but there are currently no 
standards to guard against model misuse or abuse. 
ML can also improve model generalizability to ensure 
more accurate prediction of future cases, but how this 
is best done requires further study. Interpretability of 
a model makes it more relevant to medical decision 
making, but most data-driven ML techniques remain 
unexplored. Another challenge of using AI/ML is to 
ensure ethics and eliminate prejudice during their 
application [20]. Ethical problems can arise due to 
problems with optimization, prediction, or 
classification, which can lead to inequality on 
sensitive issues or to violations of privacy. Research 
should not only build ML models but also resolve 
ethical issues associated with data use and 
interpretation. Despite these current limitations, 
AI/ML techniques are needed in the medical field 
due to the special ability to efficiently analyze and 
integrate large and heterogeneous data. 

 

 
Figure 3. Overview of machine learning. A. Illustration of an artificial neural network algorithm. The structure of artificial neural network includes three main layers, namely 
input layer, hidden layer and output layer. The input layer represents the features extracted from data, which are then integrated by the hidden layer (one or more) to obtain 
transformed features. Finally, the transformed features are used by the output layer to predict the outcome. B. Common paths for training and testing machine learning model 
in medicine. 
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Table 1. Summary of common machine learning algorithms 

Type of machine 
learning algorithm 

Description References describing 
applications 

Natural language 
processing 

Natural language processing is a general term for a series of technical methods. It can be divided into 
natural language understanding (NLU) and natural language generation (NLG). NLU focuses on how to 
understand text, while NLG focuses on how to generate natural text after understanding the text. 

[23-25] 

K nearest neighbor K nearest neighbor is a type of instance-based learning algorithm, and the training process simply 
memorize the training data. It categorizes the sample according to the similarity. The similarity is 
calculated using measures such as Euclidean distance and Hamming distance. 

[27,28,52], [67,78,79], 
[94,102,104] 

Random forest Random forest is an ensemble learning method. It contains multiple decision trees and integrates these 
decision trees to category of data. The size of trees and the number of variables usually determine the 
performance of model. 

[27,28,30], [47,48,59], 
[65-67,74,79], [90,99,101], 
[104,107,109] 

Support vector 
machine 

Support vector machine is usually used for classification and regression. It learns the optimal hyperplane 
to classify data. Generally, it has low misclassification error and scale well to high-dimensional data. 
However, selecting the optimal kernel function is essential. 

[28,32,35], [52,59,66-68], 
[75,78,79], [95,99,102], 
[103,104,108] 

Artificial neural 
network 

This is a kind of hierarchical nonlinear mapping network based on neurons and activation functions. Its 
structure includes three main parts, namely input layer, hidden layer and output layer. This structure is 
used to analyze variables in order to predict an outcome. The primary limitation is the underlying 
model’s lack of transparency. 

[32,53-56], [62,69,79], [94,102] 

Latent class analysis Latent class analysis is a statistically principled technique that is used in factor analysis, cluster analysis, 
and regression. It is to explain and estimate the association between manifest indicators by latent class 
variables. This method suits to classify subgroups in large and heterogeneous data. 

[40-44,50], [51,82] 

K-means This method divides the dataset into K clusters, and each cluster is represented by the average value of 
all samples in the cluster, which is called the "centroid". K-means clustering is easy to interpret and 
computationally efficient. However, the number of clusters needs to be prespecified. 

[46,84,86], [88] 

Logistic regression Logistic regression estimates the probability of a binary classification problem. The dependent variable 
of it obeys the Bernoulli distribution, and nonlinear factors are introduced through the Sigmoid function. 

[47,59,60], [66-68,78,79], 
[95,99,102], [104,107,108] 

Decision tree Decision tree creates a series of decision rules to predict categorical and continuous outcomes based on 
input variables. It contains three main parts: a root node, leaf nodes and branches. Decision tree is easy to 
understanding, but unstable and prone to overfitting.  

[47,49,60], [67,68,78], 
[79,97,100], [102] 

Lasso regression Lasso regression is a linear regression method using L1-regularization. L1-regularization can compress 
the coefficients of variables and change some coefficients to zero, so as to achieve the purpose of variable 
selection. 

[48,59,98] 

Naïve Bayes Naïve Bayes is a classification algorithm based on Bayes' theorem, which is suitable for scenarios where 
variables are independent of each other. It is relatively simple and has good performance in the presence 
of noise, missing data, and irrelevant variables.  

[64,67,68], [79,104] 

 
 

AI/ML and asthma 
Application of AI/ML to asthma screening and 
diagnosis 

As a heterogeneous disease, asthma is often 
under- or overdiagnosed, especially in poor areas. In 
fact, almost 20-73% of cases remain undiagnosed, 
while about 30-35% of people diagnosed with asthma 
do not actually have the condition [21, 22]. 

To address this issue, EHRs and Predetermined 
Asthma Criteria were used in a retrospective birth 
cohort study to develop for the first time a natural 
language processing algorithm for pediatric asthma 
diagnosis with high sensitivity (97%), specificity 
(95%), as well as positive (90%) and negative (98%) 
predictive values. The test cohort of this study 
consisted by 497 children, among whom the asthma 
prevalence was 31%. The application of the same 
algorithm to records from 497 children (median age, 
2.3 years) at another hospital showed similar 
sensitivity (92%), specificity (96%), and positive (89%) 
and negative (97%) predictive values, confirming the 
algorithm’s efficiency in diagnosing pediatric asthma 
in an external EHR system. However, the algorithm 
should be further validated on an adult cohort [23, 24] 
(Table 2). In another cross-sectional study, an ML 

model based on natural language processing 
algorithm was also developed by mining EHRs to 
automatically screen pediatric patients who met the 
Asthma Predictive Index criteria for asthma 
diagnosis. A total of 427 subjects with an average age 
of 5.3 years were enrolled in the test phase, and the 
sensitivity, specificity, and positive and negative 
predictive values of the ML model reached 86%, 98%, 
88%, and 98%, respectively [25]. These results suggest 
that ML models based on natural language processing 
can be used to identify pediatric patients with 
undiagnosed asthma. In addition, an artificial neural 
network model based on 13 clinical characteristics 
was developed using clinical findings from EHRs, 
which was able to identify 100% asthma patients 
among 254 individuals [26]. 

Although spirometry and bronchial provocation 
tests are increasingly available, they require the full 
cooperation of patients and cannot confirm correct 
diagnosis of asthma. Therefore, the non-invasive 
forced oscillation technique, which does not require 
patient cooperation, was combined with four ML 
algorithms (k-nearest neighbor, random forest, 
decision trees, and a feature-based dissimilarity space 
classifier) to produce ML classifiers that serve as a 
useful and portable tool for diagnosing asthma 
airway obstruction [27]. Among the four algorithms, 
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k-nearest neighbor led to the highest AUC of 0.91. 
Further research combining the forced oscillation 
technique with ML algorithms (k-nearest neighbor, 
random forest, AdaBoost with decision trees, and 
support vector machine) resulted in several novel 

classifiers that achieved AUC ≥0.9 for the differential 
diagnosis of patients with asthma or restrictive 
respiratory diseases in 97 individuals. However, the 
results should be further verified on an external 
dataset [28]. 

 

Table 2. Machine learning studies on asthma 

Reference Category Study population ML algorithms Input features Studied 
outcome 

Results Critical appraisal of the study 

Wi CI, 2017 
[23] 

Screening and 
diagnosis 

927 children: 
training cohort = 430 
test cohort = 497 

NLP Clinical (EMRs) Pediatric 
asthmatic 
subjects or not 

Sensitivity = 97%, 
specificity = 95%, positive 
predictive value = 90%, 
negative predictive 
value = 98% 

Pros: use of electronic medical 
records 
Cons: single internal electronic 
medical record system 

Wi CI, 2018 
[24] 

Screening and 
diagnosis 

595 children: 
training cohort = 298 
test cohort = 297 

NLP Clinical (EHR) Pediatric 
asthmatic 
subjects or not 

Sensitivity = 92%, 
specificity = 96%, positive 
predictive value = 89%, 
negative predictive 
value = 97% 

Pros: use of an external electronic 
medical records system 
Cons: has not yet been validated on 
an adult cohort 

Kaur H, 
2018 [25] 

Screening and 
diagnosis 

514 children: 
training cohort = 87 
test cohort = 427 

NLP Clinical (EHR) Pediatric 
asthmatic 
subjects or not 

Sensitivity = 86%, 
specificity = 98%, positive 
predictive value = 88%, 
negative predictive 
value = 98% 

Pros: development of the first 
algorithm to automatically extract 
patients who meet the Asthma 
Predictive Index criteria 
Cons: relatively small sample  

Alizadeh B, 
2015 [26] 

Screening and 
diagnosis 

254 subjects: 
training cohort = 70% 
test cohort = 30% 

ANN Clinical Asthmatic 
subjects or not 

Accuracy = 100% Pros: based on 13 clinical 
characteristics used by physicians 
to diagnose asthma 
Cons: single data source and 
relatively small sample  

Amaral J, 
2017 [27] 

Screening and 
diagnosis 

75 stable asthma 
patients: 39 with airway 
obstruction and 36 
without 

KNN, RF, 
ADAB, FDSC 

Forced oscillation 
technique 
parameters 

Airway 
obstruction 

KNN reached the highest 
accuracy range 
(AUC = 0.91) 

Pros: use of the non-invasive forced 
oscillation technique 
Cons: the exact sensitivity and 
specificity values are unknown 

Amaral J, 
2020 [28] 

Screening and 
diagnosis 

97 individuals: 
controls = 20 
asthmatic patients = 38 
restrictive patients = 39 

KNN, RF, 
ADAB, SVM 

Forced oscillation 
technique 
parameters 

Asthmatic or 
restrictive 
respiratory 
diseases 
subjects 

All classifiers achieved 
high accuracy (AUC≥0.9) 

Pros: differential diagnosis of 
asthma and restrictive respiratory 
diseases 
Cons: single practice site and 
relatively small sample  

Zhan J, 
2020 [29] 

Screening and 
diagnosis 

355 asthma patients 
and 1,480 healthy 
individuals 

Mahalanobis- 
Taguchi system 

Routine blood 
biomarkers 

Asthmatic 
subjects or not 

Accuracy = 94.15% in 
asthma patients and 
97.20% in healthy 
individuals 

Pros: diagnosis of asthma based on 
routine blood biomarkers 
Cons: a complete blood reference 
space is required to more accurately 
identify asthma patients 

Sinha A, 
2017 [30] 

Screening and 
diagnosis 

89 asthmatic subjects 
and 20 healthy controls 
 

RF  
 

Nuclear magnetic 
resonance spectra 
of exhaled breath 
condensate 

Asthmatic 
subjects or not 

Sensitivity = 80%, 
specificity = 75%  
 

Pros: advocated the use of exhaled 
breath condensate spectral 
signatures 
Cons: did not actually measure any 
metabolites 

Islam MA, 
2018 [32] 

Screening and 
diagnosis 

60 subjects: 
normal = 30 
asthma patients = 30 

ANN, SVM Clinical (lung 
sounds) 

Normal or 
asthmatic 
subjects 

Accuracy = 89.2(±3.87)% 
in ANN and 93.3(±3.10)% 
in SVM  

Pros: used lung respiratory sound 
signals  
Cons: did not collect respiratory 
sounds of both upper and lower 
lung 

Singh OP, 
2018 [34] 

Screening and 
diagnosis 

non-asthmatic = 30 
asthmatic = 43 

SVM, KNN, 
NB 

Respired carbon 
dioxide waveform 

Asthmatic 
subjects or not 

Accuracy = 94.52%, 
sensitivity = 97.67%, and 
specificity = 90% in SVM 

Pros: non-invasive, 
patient-independent method based 
on simple signal processing 
algorithm to screen for asthma 
Cons: relatively small sample  

Tomita K, 
2019 [35] 

Screening and 
diagnosis 

566 adult out-patients 
(367 asthma patients) 

SVM, DNN Clinical, Lung 
function test, 
Bronchial 
challenge test 

Adult 
asthmatic 
subjects or not 

Accuracy = 98% in DNN 
and 82% in SVM 

Pros: models based on symptoms, 
physical signs and objective tests 
Cons: single practice site 

Couto M, 
2015 [40] 

Classification 
and assessment 

asthmatic athletes = 150 
healthy athletes = 129 
athletes with other 
pathologic conditions = 
45 

LCA Clinical (athletes' 
records) 

Asthmatic 
phenotypes 

Two phenotypes: atopic 
asthma and sports 
asthma 

Pros: identification of asthmatic 
athlete phenotypes 
Cons: need to be validated by larger 
clinical interventional trials 

Chen Q, 
2012 [41] 

Classification 
and assessment 

689 asthma children LCA, BIC Clinical 
(questionnaire 
data) 

Asthmatic 
phenotypes 

Four phenotypes: 
never/infrequent, early- 
transient, early- 
persistent, and late-onset 

Pros: identification of phenotypes 
based on wheeze 
Cons: some children could not 
provide precision data 

Weinmayr 
G, 2013 [42] 

Classification 
and assessment 

>4,000 asthma children LCA, BIC Clinical 
(questionnaire), 
Bronchial 
hyperresponsiven
ess 

Childhood 
asthma 
phenotypes 

Seven phenotypes: one 
corresponding to healthy 
children; three related to 
wheeze; three related to 
congestion and 
coughed-up phlegm 

Pros: identification of phenotypes 
according to respiratory symptoms  
Cons: recall bias 
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Reference Category Study population ML algorithms Input features Studied 
outcome 

Results Critical appraisal of the study 

Bochenek 
G, 2014 [43] 

Classification 
and assessment 

201 aspirin-exacerbated 
respiratory disease 
patients 

LCA Clinical 
(questionnaire, 
spirometry, blood 
eosinophilia, 
urinary LTE4 
concentrations) 

Subphenotypes 
within AERD 
phenotype 

Four subphenotypes: 
asthma with a moderate 
course; asthma with a 
mild course; asthma with 
a severe course; poorly 
controlled 
asthma with frequent and 
severe exacerbations 

Pros: identification of 
aspirin-exacerbated respiratory 
disease phenotypes 
Cons: LCA stability over time not 
established 

Havstad S, 
2014 [44] 

Classification 
and assessment 

594 asthma children (2 
years old) 

LCA Serum IgE data on 
10 allergens 

Atopic asthma 
phenotypes 

Four phenotypes: low to 
no sensitization; highly 
sensitized; milk and egg 
dominated; peanut and 
inhalant(s)/no milk 

Pros: examination of a more 
recently born, younger, and racially 
mixed cohort  
Cons: lack of additional 
information on lung function, 
cytokines, and eosinophils 

Ross MK, 
2018 [45] 

Classification 
and assessment 

1,019 children from the 
CAMP study and 669 
children from the 
ACRN/CARE dataset 

PP Clinical  Pediatric 
asthma 
phenotypes 

Four phenotypes: 
allergic-not-obese, 
obese-not-allergic, 
allergic-and-obese, and 
not-obese-not-allergic 

Pros: discovery of more detailed 
predictive features for long-term 
asthma control other than the 
current control state 
Cons: elimination of some features 
due to missing data 

Wu W, 
2019 [46] 

Classification 
and assessment 

346 adult asthma in the 
Severe Asthma 
Research Program 

Multiple-kerne
l k-means 

Clinical, 
physiological, 
inflammatory, 
demographic 

Asthma control 
state 

Four phenotypes: clusters 
1 and 2: young modestly 
corticosteroid responsive 
allergic asthmatics with 
relatively normal lung 
function; cluster 3: late 
onset asthmatics with low 
lung function; cluster 4: 
primarily young obese 
females with severe 
airflow limitation 

Pros: identification of phenotypes 
based on corticosteroid responses 
Cons: limited to a single dose of 
systemic corticosteroid (without 
placebo) and a single point in time 

Prosperi 
MC, 2014 
[47] 

Classification 
and assessment 

554 asthma adults LR, RF, DT, AB Clinical, genetic Current 
asthma, 
wheeze, 
eczema 

Optimal AUC = 0.84, 0.76 
and 0.64 for asthma, 
wheeze, and eczema, 
respectively 

Pros: integrated genomics 
information 
Cons: genetic analysis was 
restricted to candidate genes 

Krautenbac
her N, 2019 
[48] 

Classification 
and assessment 

260 individuals: 
healthy children = 43%, 
mild-to-moderate, 
allergic asthmatics = 
47%, nonallergic 
asthmatics = 11% 

Lasso 
regression, 
elastic net, RF 

Genetic, 
immunological, 
environmental 

Asthma 
phenotypes 

AUC for three classes of 
phenotypes = 0.81 

Pros: identification of three 
important genes for classifying 
childhood asthma phenotypes: 
PKN2, PTK2 and ALPP 
Cons: should be validated in other 
cohort studies 

Williams-D
e 
Vane CR, 
2013 [49] 

Classification 
and assessment 

205 individuals DT Clinical, genetic, 
demographic 

Asthma 
endotypes 

Decision tree-based 
methods were useful 
tools for identifying 
asthma endotypes 

Pros: integrated data to identify 
asthma endotypes 
Cons: should be validated in 
external data 

Siroux V, 
2014 [50] 

Classification 
and assessment 

3,001 asthmatic adults LCA Clinical 
(questionnaire 
data), genetic 

Asthma 
phenotypes 

Four phenotypes: 
inactive/mild nonallergic 
asthma, inactive/mild 
allergic asthma, active 
allergic asthma, and 
active adult-onset 
nonallergic asthma  

Pros: large sample of asthmatic 
adults 
Cons: lack of formal replication of 
the genetic association signals 

Mäkikyrö 
EM,  
2017 [51] 

Classification 
and assessment 

1,995 asthma subjects LCA Clinical 
(questionnaire 
data), 
asthma-related 
healthcare use 

Asthma 
phenotypes 

Four subtypes for 
women: mild asthma, 
moderate asthma, 
unknown severity, and 
severe asthma. 
Three subtypes for men: 
mild asthma, unknown 
severity, and severe 
asthma. 

Pros: development of a simpler way 
to categorize asthmatic subtypes 
Cons: did not test the population 
for biomarkers and form 
endotypes; did not verify the 
subtypes with full scale lung 
function testing 

Nabi FG, 
2019 [52] 

Classification 
and assessment 

55 asthma patients Ensemble, 
SVM, KNN 

Wheeze sounds Asthma 
severity 

The best positive 
predictive value for the 
mild, moderate, and 
severe samples were 95% 
(ensemble), 88% 
(ensemble) and 90% 
(SVM), respectively. 

Pros: classified wheeze sounds of 
asthmatic patients according to 
severity 
Cons: relatively small sample  

Moustris 
KP, 2012 
[53] 

Management 
and monitoring 

3,602 children ANN Meteorological 
and ambient air 
pollution data 

Childhood 
asthma 
admissions 

Index of 
Agreement = 0.837 
Coefficient of 
determination = 0.528 

Pros: predicted the childhood 
asthma admission based on the 
bioclimatic and air pollution 
Cons: some environmental factors 
had not been included, such as 
relative humidity 

Messinger 
AI, 2019 
[54] 

Management 
and monitoring 

128 asthmatic children: 
training set = 102 
testing set = 26 

ANN Demographic, 
clinical (EHR) 

Respiratory 
score 

The performance of 
pediatric-automated 
asthma severity scores 
was better than Pediatric 
Asthma Score. 

Pros: pARS had the potential to 
help standardize acute pediatric 
asthma care in the PICU. 
Cons: incomplete data from the 
clinical record and sign database; a 
single center study 

Xiang Y, Management 31,433 adult asthma ANN Clinical (EHR) Asthma AUC = 0.7003 Pros: a time-sensitive predictive 
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Reference Category Study population ML algorithms Input features Studied 
outcome 

Results Critical appraisal of the study 

2020 [55] and monitoring patients exacerbation model 
Cons: some potential risk factors for 
asthma exacerbations might not be 
recorded or might even be 
incorrectly recorded 

Khatri KL, 
2018 [56] 

Management 
and monitoring 

Patients of visiting 
emergency 
departments in Dallas 
County for respiratory 
diseases 

ANN Clinical, 
meteorological 
and 
environmental 
pollution data 

Emergency 
department 
visits 

Overall accuracy = 81.0% Pros: can serve as useful tool for 
peak demand prediction in 
emergency departments 
Cons: limited number of variables; 
primary diagnosis may not be 
accurate 

Grunwell 
JR, 2020 
[57] 

Management 
and monitoring 

513 asthmatic children LCA Clinical, 
demographics 

Asthma 
exacerbation 

The class of multiple 
sensitizations with 
partially reversible 
airflow limitation had the 
highest exacerbation risk 
(64.3%) 

Pros: prediction of exacerbation in 
school-age children 
Cons: factors responsible for 
asthma exacerbations were not 
adequately addressed by the study 
design 

Fitzpatrick 
AM, 2020 
[58] 

Management 
and monitoring 

2,593 children with 
mild to moderate 
asthma aged 5-18 years 

LCA Clinical, 
demographics, 
lung function test 

Lung function 
and 
exacerbation 
rate 

Children who had 
multiple sensitizations 
with partially reversible 
airflow limitation had the 
highest exacerbation risk 
(52.5%) 

Pros: large sample size of diverse 
and representative children across 
the United States 
Cons: model selection for LCA can 
be subjective 

Das LT, 
2017 [59] 

Management 
and monitoring 

2,691 asthmatic 
children 

LR, Lasso 
regression, RF, 
SVM  

Clinical (EHR) Emergency 
department 
visits 

AUC = 0.86 reached by 
LR 

Pros: based on electronic health 
records (EHRs)  
Cons: record of emergency 
department visits to one medical 
center 

Zhang O, 
2020 [60] 

Management 
and monitoring 

2,010 asthma patients LR, DT, NB, 
perceptron 
algorithms 

Daily monitoring 
data 

Asthma 
exacerbations 

AUC = 0.85, sensitivity = 
90%, and specificity = 
83% reached by LR 

Pros: use of a large international 
dataset to detect severe asthma 
exacerbations 
Cons: data were collected using 
paper diaries, which be inaccurate 
or fabricated 

Luo L, 2018 
[61] 

Management 
and monitoring 

6,813 admission records XGBoost Search index, air 
pollution data, 
weather data, 
historical 
admissions  

Asthma 
admission 

AUC = 0.832 Pros: use of an easily accessible and 
daily updated daily search index  
Cons: data from a single 
geographical region 

Ram S, 
2015 [62] 

Management 
and monitoring 

Emergency department 
visits for asthma to the 
Children’s Medical 
Center of Dallas 
(between October 2013 
and December 2013) 

ANN Twitter data, 
Google search 
interests, 
environmental 
data 

Emergency 
department 
visits 

Accuracy = 70% Pros: based on real-time 
environmental and internet-based 
data  
Cons: data of emergency 
department visits from one hospital 

Finkelstein 
J, 2016 [64] 

Management 
and monitoring 

7,001 records submitted 
by adult asthma 
patients 

NB, BN, SVM Daily 
self-monitoring 
reports 

Asthma 
exacerbations 

BN model reached 
sensitivity, specificity, 
and accuracy of 100% 

Pros: use of home telemonitoring 
data  
Cons: the number of cases of 
asthma exacerbations was small 

Huffaker 
MF, 2018 
[65] 

Management 
and monitoring 

33 subjects RF Recorded 
physiologic data 

The time period 
during which 
onset of asthma 
symptoms 
occurred 

Sensitivity = 47.2%, 
specificity = 96.3%, 
accuracy = 87.4% 

Pros: showed that passive 
physiologic monitoring can be used 
in the home to assess asthma 
control 
Cons: small sample 

Luo L, 2020 
[66] 

Management 
and monitoring 

Cost data of asthmatic 
patients 

LR, RF, SVM, 
classification 
regression tree, 
backpropagatio
n neural 
network 

Cost data Treatment cost AUC and sensitivity 
increase of 46.89% and 
101.07%, respectively 

Pros: use of machine learning to 
predict high cost 
Cons: lack of analysis of 
low-frequency comorbidities 

Khasha R, 
2019 [67] 

Management 
and monitoring 

96 asthma patients LR, XGBoost, 
RF, DT, KNN, 
NB, SVM 

Clinical, 
demographics, 
lung function test 

Control level Optimal 
accuracy = 91.66% 

Pros: developed a novel ensemble 
learning method for asthma control 
level detection 
Cons: limited factors affecting 
asthma control were included 

Tsang K, 
2020 [68] 

Management 
and monitoring 

5,875 asthma patients LR, NB, DT, 
SVM 

mHealth data Stable and 
unstable 
periods 

Optimal 
sensitivity = 86.6%, 
optimal 
specificity = 72.5%, 
optimal AUC = 0.871 

Pros: personalized algorithms to 
enhance asthma management 
Cons: self-reported data rather than 
objective measures 

Hosseini 
SA, 2020 
[69] 

Treatment 80 patients with mild or 
moderate allergic 
asthma 

ANN Clinical, 
immunologic, 
hematologic, 
demographic 

Low to high 
level of effect 

Accuracy>99% Pros: new machine learning model 
for the prediction of asthmatic drug 
effectiveness 
Cons: relatively small sample  

Abbreviations: AB, AdaBoost; ADAB, AdaBoost with decision trees; AERD, aspirin-exacerbated respiratory disease; ANN, artificial neural networks; AUC, area under the 
receiver operating characteristic curve; BN, Bayesian networks; BIC, Bayesian Information Criterion; DT, decision trees; DNN, deep neural network; EMRs, electronic 
medical records; EHR, electronic health records; FDSC, feature-based dissimilarity space classifier; KNN, k-nearest neighbor; LCA, latent class analysis; LR, logistic 
regression; NB, naïve Bayesian; NLP, natural language processing; PP, predictor pursuit; RF, random forest; SVM, support vector machine. 
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Despite the lack of specific biomarkers for 
asthma, its diagnosis can be improved by combining 
multiple methods and clinical data. For instance, a 
novel AI system (Mahalanobis-Taguch) was 
developed based on ML algorithm and several 
biomarkers determined from routine blood samples, 
such as platelet distribution width, white blood cell 
count, and eosinophil count. This system was trained 
using data from 319 asthmatic patients, then validated 
in 35 asthmatic patients with a classification accuracy 
of 94.15% [29]. Further confirmation of the 
effectiveness of this AI system in clinical practice will 
simplify the diagnosis of asthma. In another study, a 
random forest classifier based on nuclear magnetic 
resonance spectroscopy of exhaled breath condensate 
was developed using the metabolome as the 
biomarker source [30]. The classifier differentiated 
asthma patients and healthy controls with 80% 
sensitivity and 75% specificity. However, the sample 
in the study (n = 109) was relatively small, and no 
actual metabolites were measured, suggesting that the 
method requires further validation. 

A recent systematic review has also suggested 
that automated analysis of respiratory sounds by ML 
algorithms can be used for effective screening and 
diagnosis of respiratory diseases [31]. Indeed, 
multichannel lung respiratory sound signals derived 
from 30 asthmatic patients and 30 healthy controls 
were combined with artificial neural network or 
support vector machine classifiers for the diagnosis of 
asthma with respective accuracies of 89.2 ± 3.87% and 
93.3 ± 3.10% [32]. Interestingly, this study did not rely 
on the presence of the typical wheezing asthmatic 
symptom as a sound signal. Future studies should 
collect respiratory sounds of both upper and lower 
lung lobes for further validation of the results. 

Given the usefulness of end-tidal capnography 

for disease diagnosis, a non-invasive, patient- 
independent method to process carbon dioxide 
waveform signals was developed based on the 
support vector machine classifier to differentiate 30 
non-asthmatic and 43 asthmatic patients. The average 
accuracy, sensitivity, and specificity of the algorithm 
reached 94.52%, 97.67% and 90%, respectively, 
suggesting end-tidal capnography as an effective 
technique for asthma diagnosis [33, 34]. However, 
further validation of the results is required due to the 
small samples in those studies. 

Recently, several classical ML algorithms, such 
as logistic regression analysis, support vector 
machine, and deep neural network, were compared 
for their diagnostic ability when based only on 
symptoms and physical signs, or when based on the 
combination of symptoms, physical signs, 
biochemical findings, lung function tests, and the 

bronchial provocation tests. That study included 566 
adult outpatients and indicated that the deep neural 
network model was more accurate than other 
conventional ML tools, reaching an accuracy of 98% 
when symptoms, physical signs and objective tests 
were also used [35]. This study may be the first to 
report that AI can perform comparably to human 
experts for diagnosing asthma in adults. However, the 
results should be interpreted and generalized 
carefully, as different ML predictive models perform 
differently depending on the conditions. 

Application of AI/ML to the classification and 
assessment of asthma 

Asthma is a heterogeneous disease with multiple 
phenotypes and endotypes that must be properly 
distinguished for precise prevention and personalized 
treatment [36-38]. In clinical practice, spirometry and 
bronchial provocation tests are used to assess airflow 
limitation and hyperresponsiveness, allowing the 
identification of some asthma phenotypes, while 
eosinophil count analysis and fractional exhaled nitric 
oxide measurements can also be applied [39]. 
However, further research is still required to 
practically and accurately identify the asthma 
phenotypes. 

Latent class analysis can generally fit a 
probabilistic model to a dataset of several variables 
such as asthma symptoms or allergy. Therefore, 
several recent studies have developed, verified, and 
applied ML-based latent class analysis for asthma 
classification, indicating its suitability for modelling 
data from symptomatic or asymptomatic asthma 
patients [40-44]. For instance, based on the data of 
athlete records that included respiratory symptoms, 
airway inflammation and hyperresponsiveness, 
allergic sensitization and lung function test, latent 
class analysis successfully identified two asthma 
phenotypes in a total of 150 elite asthmatic athletes 
who came from Portugal and Norway. The atopic 
asthma phenotype was defined by allergy symptoms, 
rhinitis, and high exhaled nitric oxide level, while the 
sports asthma phenotype was defined by 
exercise-induced respiratory symptoms and airway 
hyperresponsiveness, but no allergy [40]. The study 
also found that athletes who practiced water and 
winter sports were at higher risk of developing the 
sports asthma phenotype. The validation of this 
classification method using additional data sources or 
clinical interventional trials would significantly 
benefit the personalized treatment of asthmatic 
athletes. 

A predictor pursuit algorithm based on clinical 
treatment and outcome data was also developed to 
analyze phenotypes of 1688 childhood asthma 
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patients. Four phenotypes were identified with better 
(P < 0.001) than traditional ML methods [45]. The 
study also found that nedocromil was better than 
budesonide in controlling asthma in children with 
obesity and allergy. A similar classification approach 
was later reported that focused mainly on the 
response of severe asthma patients to corticosteroids. 
Using an unsupervised ML approach (multiple-kernel 
k-means clustering), four phenotypes were identified 
in a total of 346 asthma patients. The greatest 
corticosteroid responsiveness was observed for 
patients with late-onset, poor lung function as well as 
high baseline eosinophilia, while the lowest 
responsiveness was observed for young, obese female 
patients with severe airflow limitation and mild 
eosinophilic inflammation [46]. Applying these 
methods to the timely and accurate classification of 
asthma patients will be a valuable reference for 
individualized treatment, especially for difficult-to- 
treat asthma, while reducing the unnecessary use of 
corticosteroids and related complications. 

Precision medicine is an emerging approach of 
medical science for disease diagnosis and treatment, 
while genomics is an important manner. In recent 
years, genetic data have been combined with other 
clinical information (e.g., demographic, laboratory, 
and environmental factors) within different ML 
algorithms to determine asthma phenotypes [47-50]. 
For example, 14 clinical features from 3001 adults 
with asthma, which included demography, medical 
history, respiratory symptoms, allergic characteristics, 
lung function test and bronchial hyperresponsiveness, 
were integrated with genomics data from previous 
analyses in order to differentiate asthma phenotypes. 
Four phenotypes were obtained using latent class 
analysis algorithm: inactive/mild nonallergic asthma 
(18%), inactive/mild allergic asthma (37%), active 
allergic asthma (27%) and active adult-onset 
nonallergic asthma (18%). This study also identified 
15 single nucleotide polymorphisms associated with 
at least one these four asthma phenotypes, most of 
them were linked to the “active allergic asthma” 
phenotype [50]. Further research is needed to 
overcome the limitations of the in-house validation 
and small sample for genetic analysis, as well as to 
incorporate more factors and longitudinal data. 

ML algorithms have also been used to classify 
asthma phenotypes according to the disease severity. 
In particular, latent class analysis was applied to 
questionnaire data included demographic and clinical 
features to classify female asthma patients into four 
phenotypes (“controlled, mild asthma”, “partly 
controlled, moderate asthma”, “uncontrolled asthma 
of unknown severity”, and “uncontrolled, severe 
asthma”) and male asthma patients into three 

phenotypes (“controlled, mild asthma”, “poorly 
controlled asthma of unknown severity”, and “partly 
controlled, severe asthma”) [51]. Although the study 
provided a simpler method for identifying asthmatic 
phenotypes, there are still several limitations, such as 
the lack of formal verification of lung function testing. 
In a similar study, the correlation of wheeze sounds 
with asthmatic severity was analyzed in 55 asthmatic 
patients using three ML algorithms, including the 
ensemble, support vector machine and k-nearest 
neighbor. The ensemble algorithm showed better 
performance, and the wheeze sound was identified as 
a sensitive and specific predictor of asthma severity 
[52]. 

Application of AI/ML to the monitoring and 
management of asthma 

Asthma exacerbation and admission have a 
significant impact on the life quality and mortality of 
patients. Artificial neural networks have been 
extensively used to monitor and manage asthma 
exacerbation and admission [53-56]. For example, an 
artificial neural network was used to analyze clinical 
data and create an automated pediatric asthma 
severity score, which showed better performance than 
the pediatric asthma score and could therefore help 
manage pediatric asthma exacerbation in the pediatric 
intensive care unit [54]. Similarly, a retrospective 
cohort study of 31,433 adult asthma patients reported 
a time-sensitive predictive model based on an 
artificial neural network, which integrated clinical 
variables in the observed time window to predict 
asthma exacerbation [55]. In addition, a modified 
artificial neural network was applied to predict 
emergency department visits of asthma and COPD 
patients due to exacerbation. The developed ML 
model integrated several daily variables, including 
the number of emergency department visits as well as 
meteorological and environmental pollution data, 
reaching an overall accuracy of 81%. Nevertheless, 
further studies should include other variables 
associated with the exacerbation of these diseases [56]. 

In recent studies, latent class analysis has been 
used to predict the exacerbation risk of asthma and 
the decline of lung function in school-age children [57, 
58]. In the latter study, a dataset consisting of 19 
demographic, clinical, and laboratory variables 
derived from 2,593 children with mild to moderate 
asthma was used, and the analysis identified allergy 
and lung function as the main predictors of 
exacerbation. A similar retrospective cohort study 
was also performed using EHRs from 2,691 asthmatic 
children. Among several ML methods, the 
multivariable logistic regression model proved to be 
the most accurate, with AUC = 0.86 [59]. However, all 
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data in that study came from a single medical center, 
and the multivariable logistic regression model could 
not be validated. 

The application of four ML algorithms (logistic 
regression, decision tree, naïve Bayes, and perceptron 
algorithm) to predict severe exacerbations of asthma 
was recently reported based on daily monitoring data 
of 576 severe exacerbation events in 2,010 asthma 
patients. The logistic regression-based model yielded 
an optimal AUC of 0.85, sensitivity of 90% and 
specificity of 83% [60]. Given the close correlation 
between severe exacerbations and asthma mortality, 
the model may be useful to physicians as a reference, 
but the research data were collected from paper 
diaries that may be inaccurate. 

In order to assess the predictability of an Internet 
search index for asthma admission, an ML-based 
prediction model (XGBoost) was developed by 
combining search index and data, such as air 
pollution, weather, and previous admission events, 
yielding a maximum AUC of 0.832. However, the 
model performance should be further validated in 
other geographical regions [61]. In a similar approach, 
an artificial neural network model was applied to 
predict, in real time, asthma-related emergency 
department visits using environmental and social 
media data, such Google searches and Twitter [62]. 
The model accuracy was 70%, making it suitable for 
early intervention in asthma patients to avoid 
exacerbation. A growing number of studies have also 
used electronic devices to manage, monitor, and 
follow asthma patients in real time [63-65]. For 
example, several ML algorithms (naïve Bayesian 
classifier, adaptive Bayesian network, and support 
vector machine) were used to analyze telemonitoring 
data from laptops at home in order to predict asthma 
exacerbation in a timely fashion. The sensitivity, 
specificity, and accuracy of the adaptive Bayesian 
network model reached 100%, but the study was 
limited by the low number of exacerbations in the 
collected data [64]. Another study used a contactless 
bed sensor to capture physiological and 
environmental data for the early detection of asthma 
exacerbation in children. Using a random forest 
classification model, an accuracy of 87.4% was 
achieved [65]. 

Moreover, a comorbidity portfolio model was 
also designed based on ML algorithms to improve the 
prediction of asthma treatment costs over traditional 
approaches [66]. The study found that a combination 
of cardiovascular and other respiratory diseases was a 
major risk for increased treatment costs in asthmatic 
patients. This study provides an important 
perspective on controlling asthma expenses in light of 
the high financial burden of asthma worldwide and 

continuing concern about treatment costs. 
Successful monitoring of asthma control levels 

also plays a significant role in the treatment of the 
disease. Therefore, physicians’ expertise was 
combined with an ensemble ML algorithm to detect 
asthma control. The optimal accuracy of the model 
was 91.66% and, although the study included 
relatively few factors affecting asthma control, the 
model could help clinicians develop timely treatment 
plans [67]. Based on these findings, several common 
supervised ML algorithms were further used to 
analyze asthmatic monitoring data from 5,875 
patients enrolled in the Asthma Mobile Health Study. 
Both logistic regression and naïve Bayes-based 
classifiers identified the control level with high 
accuracy (AUC > 0.87) [68], suggesting that this 
method could serve as a valuable reference for the 
treatment of asthma in clinical practice. However, 
these models should be further validated using more 
diverse data, preferably data based on objective 
measures rather than self-report. 

Application of AI/ML to the treatment of 
asthma 

Despite the wide variety of studies on AI/ML 
implementation in asthma, very few studies have 
reported the application of AI/ML systems to the 
treatment of the disease, as such treatment is usually 
controlled by specific guidelines. In addition to the 
two aforementioned studies [45, 46], the effects of 
anti-inflammatory and antioxidative saffron on the 
treatment of mild-to-moderate allergic asthma in 80 
patients were predicted using a genetic algorithm 
developed by modifying an artificial neural network 
system. The accuracy of the prediction system was 
greater than 99% in both the training and testing 
phase [69], which probably makes it suitable for 
predicting the treatment effect of other asthma drugs. 
Nevertheless, the performance of this prediction 
system needs to be confirmed with studies on more 
patients with allergic or other types of asthma. 

Discussion and future directions 
With the continuous improvement of computer 

learning and the accumulation of asthma-related data, 
the application of AI/ML in asthma has made great 
progress with good results for specific clinical 
research purposes [70]. Using AI/ML techniques, the 
mining and analysis of huge clinical, metabolomics, 
genomics, and other heterogeneous asthma data can 
help to better understand the pathogenesis and guide 
individual treatment of the disease. Nevertheless, 
some AI/ML models developed for asthma diagnosis, 
classification, assessment, and prediction have many 
limitations, such as a single data source, small sample, 
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or lack of external confirmation, which should be 
overcome in future studies. 

The application of AI/ML in asthma is also still 
limited. For example, although the current studies can 
be combined with different data or variables to build 
ML models for identifying asthma phenotypes, the 
integration of relative comprehensive data or 
variables, including demographic, environmental, 
medical history, symptoms, laboratory examination, 
pulmonary function testing, genomics, metabolomic, 
and imaging, is still absent. Moreover, AI/ML 
methods have rarely been used to identify or predict 
patients with severe asthma. Such studies would be of 
great clinical significance, because an in-depth 
understanding of asthma phenotypes and the reliable 
identification of specific subgroups could guide the 
use of specific drugs, such as biological-targeted 
agents, to bring precision medicine to asthma 
patients. In addition, most studies on the application 
of AI/ML in asthma are based on populations and 
datasets from developed countries, while very little 
research has been conducted on populations and data 
in developing countries, where the need for diagnosis, 
treatment and management is more urgent due to the 
weaker healthcare systems. To make the situation 
more challenging, the COVID-19 pandemic has 
severely disrupted health services for patients with 
chronic airway diseases. Therefore, the use of AI/ML 
tools to establish a management system for such 
patients during an infectious disease epidemic should 
be seriously considered. 

AI/ML and COPD 
Application of AI/ML to the screening and 
diagnosis of COPD 

There are no specific symptoms related to 
COPD, but the disease can be diagnosed using the 
pulmonary function test. However, its accuracy is 
highly dependent on the patient’s cooperation, which 
explains the common under- and overdiagnosis of 
COPD in clinical practice [71]. To address this 
challenge, several AI/ML techniques have been used 
to develop an economical, safe, and effective method 
for COPD diagnosis. For instance, as an AI diagnostic 
tool, an “expert system” was built using the following 
steps: questionnaire formation, WebFlex code 
development, expert panel pilot validation and 
clinical validation. The questionnaire information 
included demography, symptoms, environment, and 
diagnostic tests. In the clinical validation phase, this 
“expert system” reached an overall accuracy of 97.5% 
in 241 patients [72]. In a similar manner, a subsequent 
study used data from lung function tests and clinical 
information from 1,430 subjects to build AI-based 

software for the diagnosis of COPD [73]. That study 
showed that the developed software can reach an 
accuracy of 82% in 50 COPD patients significantly 
exceeding the diagnostic performance of 
pulmonologists (44.6 ± 8.7%). It is therefore clear that 
AI technology can considerably help clinicians make 
diagnostic decisions for COPD patients. 

To reduce the dependence on lung function tests 
for early diagnosis of COPD, ML has also been used to 
mine and analyze transcriptomic data extracted from 
human bronchial epithelial cells, leading to the 
identification of abnormal expression of 15 genes in 
the disease, 10 of which had not previously been 
reported as COPD biomarkers. The different gene 
combinations were then analyzed by the random 
forest algorithm to distinguish non-smokers from 
smokers and COPD patients [74] (Table 3). Despite 
the remarkable diagnostic accuracy of each subgroup 
(65%), further studies are required to improve the 
model performance in distinguishing COPD patients 
from smokers without COPD. Given the lack of 
specific biomarkers for COPD diagnosis, support 
vector machine was also integrated with two blood 
biomarkers, N-acetyl-glycoprotein and lipoprotein, 
which were obtained by comparing 54 COPD patients 
with 74 normal individuals. The model achieved a 
diagnostic accuracy of 84.62% and an AUC of 0.90 
[75], suggesting that the combination of ML 
algorithms with biomarkers may favor COPD 
diagnosis and reduce the dependence on lung 
function tests. However, further validation in a larger 
patient sample is needed. 

Respiratory sounds are an important sign of the 
lungs and their analysis can be useful in the diagnosis 
of respiratory diseases [76, 77]. In a recent study, 39 
features of respiratory sound were integrated with 
three lung function features derived from 30 COPD 
patients and 25 healthy subjects, and five ML 
classifiers were used to categorize normal individuals 
and COPD patients. Support vector machine and 
logistic regression achieved a diagnostic accuracy, 
sensitivity, and specificity of almost 100% [78]. In a 
similar approach, 22 different clinical features were 
extracted from each of 132 subjects. Based on this 
dataset, a decision support system was developed to 
diagnose COPD and asthma, with the random forest 
classifier showing the highest COPD diagnostic 
accuracy (97.7%) compared to other techniques. 
Moreover, smoking, forced expiratory volume in 1 
second (FEV1), age, and forced vital capacity proved 
to be the main predictors [79]. However, the results of 
these studies should be carefully interpreted due to 
their small, single-center samples. 
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Table 3. Machine learning studies on chronic obstructive pulmonary disease 

Reference Category Study population ML 
algorithms 

Input features Studied outcome Results  Critical appraisal of the study 

Matsumura 
K, 2020 [74] 

Screening and 
diagnosis 

non-smokers 68 
smokers = 88 
COPD subjects = 48 

RF Genetic 
(transcriptomic data) 

Smokers or early 
stage of COPD 

Each group with 65% 
accuracy. 
The discrimination 
accuracy of COPD 
subjects from smokers 
was only 29% 

Pros: identification of novel 
genes associated with COPD 
Cons: limited number of 
patients with clear description 
of the smoking status 

Zheng H, 
2020 [75] 

Screening and 
diagnosis 

COPD patients = 54 
normal individuals = 74 

SVM Serum metabolic 
biomarkers 

COPD subjects or 
not 

Accuracy = 84.62%, 
AUC = 0.90 

Pros: based on serum 
metabolomics  
Cons: should be validated in a 
larger clinical sample 

Haider NS, 
2020 [78] 

Screening and 
diagnosis 

COPD patients = 30  
healthy subjects = 25 

SVM, KNN, 
LR, DT, DA 

Clinical (lung 
sound), spirometry 
features 

COPD subjects or 
not 

Optimal accuracy = 100% Pros: combination of 
spirometry data with lung 
sound features for COPD 
diagnosis 
Cons: small sample and 
single-center data 

Spathis D, 
2019 [79] 

Screening and 
diagnosis 

132 patients NB, LR, 
ANN, SVM, 
KNN, DT, RF 

Clinical, 
demographic 

Asthma or COPD Optimal 
accuracy = 97.7% 

Pros: identification of COPD 
based on 22 different clinical 
features 
Cons: relatively small sample 

Al Sallakh 
MA, 2018 
[82] 

Screening and 
diagnosis 

Secure Anonymised 
Information Linkage 
(SAIL) Databank 

LCA Clinical (EHR) Asthma-COPD 
overlap 

A protocol Pros: based on electronic health 
records (EHRs) 
Cons: incomplete information 
of electronic health records 

Pikoula M, 
2019 [84] 

Classification 
and 
assessment 

30,961 COPD patients K-means, 
hierarchical 
clustering 

Clinical (EHR) COPD 
phenotypes 

Five phenotypes: 
anxiety/depression; 
non-comorbid; 
cardiovascular/diabetes; 
severe COPD/frailty; 
obesity/atopy 

Pros: identification of 
phenotypes based on EHRs 
Cons: unclear boundaries of 
some clusters 

Burgel PR, 
2017 [85] 

Classification 
and 
assessment 

6,060 COPD patients  CART Clinical COPD 
phenotypes 

Five phenotypes: mild 
respiratory, 
moderate-to-severe 
respiratory, 
moderate-to-severe 
comorbid/obese, very 
severe respiratory, very 
severe comorbid 

Pros: integrated respiratory 
characteristics and 
comorbidities 
Cons: assessment of 
comorbidities was based on 
physician diagnoses that did 
not consider occult conditions 

Yoon HY, 
2019 [86] 

Classification 
and 
assessment 

1,195 COPD patients K-means Clinical (seven 
variables)  

COPD 
phenotypes 

Four phenotypes: 
putative asthma-COPD 
overlap, mild COPD, 
moderate COPD, severe 
COPD  

Pros: demonstrated that 
phenotype is linked to the 
occurrence of acute 
exacerbation 
Cons: short follow-up duration 

Kim WJ, 
2018 [87] 

Classification 
and 
assessment 

1,676 COPD patients 
from 13 Asian cities 

Hierarchical 
cluster 
analysis 

Clinical COPD 
phenotypes 

Three phenotypes: worse 
lung function and fewer 
symptoms, worse lung 
function and more 
symptoms. milder COPD 
and a preserved FEV1 
and FEV1/FVC ratio 

Pros: identification of COPD 
subgroups in a large Asian 
sample 
Cons: 90% male subjects 

Castaldi PJ, 
2014 [88] 

Classification 
and 
assessment 

10,192 smokers K-means Clinical COPD 
phenotypes 

Four phenotypes: 
relatively resistant 
smokers, mild upper 
zone emphysema- 
predominant, airway 
disease-predominant, 
severe emphysema 

Pros: identification of 
phenotypes based on airway 
disease and emphysema 
Cons: non-inclusion of 
biomarkers and comorbidities 

Bodduluri S, 
2020 [90] 

Classification 
and 
assessment 

8980 individuals DNN, RF Spirometry data Chest CT 
phenotypes 
(normal, airway 
predominant, 
emphysema 
predominant, and 
mixed 
emphysema/ 
airway) 

The DNN model had the 
highest accuracy (AUC = 
0.80 and 0.91) 

Pros: used spirometry data to 
train the model 
Cons: nonsmokers with and at 
risk for COPD were not 
included in the cohort 

Gawlitza J, 
2019 [94] 

Classification 
and 
assessment 

75 COPD patients KNN, 
XGBoost, 
ANN 

Quantified 
computed 
tomography 

Pulmonary 
function 

KNN model with the 
lowest mean relative 
error (16%) 

Pros: prediction of lung 
function values from 
quantitative computed 
tomography parameters 
Cons: small sample  

Westcott A, 
2019 [95] 

Classification 
and 
assessment 

95 COPD patients LR, SVM Thoracic computed 
tomography 

Lung ventilation Accuracy = 88%, 
AUC = 0.82 

Pros: development of a 
computed tomography 
analysis pipeline 
Cons: few mild COPD patients 

González G, 
2018 [96] 

Classification 
and 

8,983 COPDGene 
participants and 1,672 

Convolution
al neural 

Chest computed 
tomography 

COPD, stage, 
acute respiratory 

C-index = 0.856, accuracy 
= 51.1% in COPDGene 

Pros: based on chest computed 
tomography images 
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Reference Category Study population ML 
algorithms 

Input features Studied outcome Results  Critical appraisal of the study 

assessment ECLIPSE participants network disease events, 
mortality 

cohort 
 

Cons: high training 
computational cost and 
memory requirements 

Peng J,  
2020 [97] 

Classification 
and 
assessment 

410 hospitalized 
AECOPD patients 

DT Clinical (medical 
records) 

Mild and severe 
AECOPD 

Accuracy = 80.3% Pros: fast identification of the 
deterioration and death risk of 
AECOPD patients  
Cons: non-inclusion of 
interleukin and other 
inflammatory cytokines 

Goto T,  
2019 [98] 

Management 
and 
monitoring 

44,929 hospitalized 
COPD patients 

Lasso 
regression, 
DNN 

Clinical 30-day 
readmission 

C-statistic = 0.61 Pros: huge sample size and 
more than 1000 predictors  
Cons: unable to identify 
patients readmitted to different 
hospitals 

Min X,  
2019 [99] 

Management 
and 
monitoring 

111,992 patients from the 
Geisinger Health System 

LR, RF, SVM, 
GBDT, MLP 

Medical claims data 30-day 
readmission 

Optimal AUC = 0.653 Pros: combined knowledge 
and data driven features 
Cons: lack of mortality 
information for patients 

Cavailles A, 
2020 [100] 

Management 
and 
monitoring 

143,006 patients 
hospitalized for AECOPD 

DT Clinical Risk of 
readmission 

Previous admission 
times was the most 
important risk of 
readmission 

Pros: identification of variables 
associated with readmission 
Cons: no information on 
spirometry or severity 

Chen W,  
2020 [101] 

Management 
and 
monitoring 

4,167 subjects RF Clinical, spirometry Prebronchodilator 
FEV1, risk of 
airflow limitation 

C-statistic = 0.86–0.87  Pros: development of a 
personalized risk model to 
predict the risk of airflow 
limitation 
Cons: lack of ethnic diversity in 
the cohort 

Ma X,  
2020 [102] 

Management 
and 
monitoring 

COPD patients = 441 
control subjects = 192 

KNN, LR, 
DT, SVM, 
ANN, 
XGBoost 

Genetic, clinical Early-stage COPD KNN and LR had the 
highest precision (82%) 
and accuracy (81%) 
ANN had the highest 
sensitivity (100%) 

Pros: identification of the 
association of genes and COPD 
development 
Cons: unbalanced samples 
from the seven centers; only 
nine 9 genes and five clinical 
features were obtained 

Lanclus M, 
2019 [103] 

Management 
and 
monitoring 

62 COPD patients SVM Functional 
respiratory imaging 

COPD 
exacerbations 

Accuracy = 80.65%, 
positive predictive 
value = 82.35% 

Pros: use of functional 
respiratory imaging for 
AECOPD prediction 
Cons: more advanced COPD 
patients in the cohort 

Wang C, 
2020 [104] 

Management 
and 
monitoring 

AECOPD patients = 135 
not AECOPD patients = 
168  

RF, SVM, LR, 
KNN, NB 

Clinical (EMRs) COPD acute 
exacerbations 

Optimal 
sensitivity = 80%, 
specificity = 83%, 
positive predictive 
value = 81%, negative 
predictive value = 85%, 
and AUC = 0.90 from 
SVM 

Pros: decision support for 
clinicians 
Cons: single-center cohort  

Luo L,  
2020 [107] 

Management 
and 
monitoring 

780,295 hospitalizations 
data  

LR, RF, 
XGBoost 

Medical insurance 
data 

High-cost COPD 
patients 

AUC = 0.787 (LR); 
AUC = 0.792 (RF); 
AUC = 0.801 (XGBoost) 

Pros: identification of high 
costs for COPD patients 
Cons: no smoking status, 
household income, or family 
population information 

Morales DR, 
2018 [108] 

Management 
and 
monitoring 

54879 COPD patients LR, SVM Clinical 1-year mortality C-statistic = 0.723 Pros: use of external data to 
validate models 
Cons: analysis of patients only 
with complete data 

Moll M,  
2020 [109] 

Management 
and 
monitoring 

2,632 participants from 
COPDGene cohort and 
1,268 participants from 
ECLIPSE cohort 

RF Clinical, spirometry, 
imaging 

Time to death 
from any cause 

C-index ≥ 0.7 in both 
cohorts 

Pros: prediction of all-cause 
mortality 
Cons: cohorts were not 
representative of the general 
population 

Orchard P, 
2018 [110] 

Treatment 135 COPD patients Sparse 
maximum- 
margin 
classifier, 
ensembles of 
boosted 
classifier, 
multitask 
neural 
network 
model 

Clinical 
(telemonitoring 
data), weather 

Admission and 
initiation of oral 
corticosteroid 
treatment 

Optimal AUC = 0.74 Pros: the model serves as a 
guide for corticosteroid 
therapy 
Cons: lack of a gold standard 
definition for exacerbation 

Abbreviations: ANN, artificial neural networks; AUC, the area under the curve; BN, bayesian networks; CART, classification and regression tree; DA, discriminant analysis; 
DNN, deep neural network; DT, decision trees; EMRs, electronic medical records; EHR, electronic health records; GBDT, gradient boosting decision tree; KNN, k-nearest 
neighbors; LCA, latent class analysis; LR, logistic regression; MLP, multi-layer perceptron; NB, naïve Bayes; RF-random forest; SVM-support vector machine. 

 
Inequities in access to medical resources also 

affect the diagnosis of COPD, especially in less 
developed areas. Therefore, an automated telehealth 
AI system was recently developed and verified in 780 
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patients from several medical institutions [80]. The 
diagnostic accuracy reached 97%, and the simple 
equipment involved may allow its use in remote areas 
and in patients with less mobility. 

Some patients may also have both asthma and 
COPD, known as asthma-COPD overlap (ACO). 
However, the lack of accurate diagnostic criteria has 
led to insufficient data on the prevalence and 
treatment of ACO [81]. The only relevant study of 
which we are aware has been registered so far as a 
protocol, and it aims to precisely classify COPD, 
asthma, and ACO patients by applying a modified 
latent class model to EHRs from the Secure 
Anonymized Information Linkage databank [82]. The 
analyzed data will include demographic 
characteristics, history of present illness, allergy, and 
smoking history, so the future study is expected to 
provide useful information. 

Application of AI/ML to the classification and 
assessment of COPD 

According to the Global Obstructive Lung 
Disease Initiative, COPD patients are classified into 
four phenotypes based on their symptomatic 
assessment, exacerbation and hospitalization history 
[83]. However, the discriminatory ability of this 
method is insufficient, leading to the AI/ML-based 
integration of additional information, including 
physiological features, lung function test results, 
comorbidities, genome, and biomarkers, for precise 
phenotype classification, severity assessment, and 
therapeutic guidance [84-89]. For example, k-means 
clustering was applied to analyze eight factors in 
1,195 COPD patients such as physiological features, 
medical history, COPD assessment test score, and 
post-bronchodilator FEV1. Four phenotypes were 
identified: putative asthma-COPD overlap (cluster 1), 
mild COPD (cluster 2), moderate COPD (cluster 3), 
and severe COPD (cluster 4). Cluster 4 showed the 
worst post-bronchodilator FEV1 (46.7%), the shortest 
6-min walking distance (365 m), and the highest 
COPD assessment test score (17.5), whereas cluster 1 
showed the highest risk of acute exacerbation [86]. 
Nevertheless, the results need to be supported by a 
longer follow-up duration (>6 months). In another 
study, the variation in lung function and life quality 
scores among 1,676 Asian COPD patients were 
monitored for one year, identifying three phenotypes 
of COPD patients. Cluster 1 was defined by worse 
lung function but fewer symptoms, while cluster 3 
showed mild severity but higher body mass index; 
cluster 2 showed severe disease and more symptoms, 
including the highest risk of acute exacerbation and 
rate of FEV1 deterioration [87]. However, one of the 
main study limitations was the high proportion of 

male subjects (90%). Moreover, using two ML 
methods (k-means and hierarchical clustering) and 
based on comorbidities and risk factors, 30,961 COPD 
patients were classified into five phenotypes: anxiety 
and depression, severe airflow limitation and 
weakness, cardiovascular disease and diabetes, as 
well as obesity/atopy and non-comorbidity [84]. 
Although the aforementioned studies used different 
ML algorithms and clinical variables and had some 
limitations, all supported the idea that exploring 
different phenotypic classification can improve 
individualized treatment. For similar purpose, the 
spirometry data of 8980 individuals (COPDGene 
cohort study) was used to develop a deep neural 
network model for the identification of four chest 
computed tomography imaging phenotypes (normal, 
airway predominant, emphysema predominant, and 
mixed emphysema/airway). The deep neural 
network model had a higher accuracy both in the 
classification of predominant emphysema/airway 
phenotypes (AUC = 0.80) and predominant 
emphysema/small airway phenotypes (AUC = 0.91) 
than FEV1/forced vital capacity, FEV1% predicted 
and random forest classifier. However, non-smokers 
with and at risk for COPD should be included in 
future studies [90]. 

The assessment of persistent airflow limitation in 
COPD patients depends on lung function tests. 
However, only some COPD patients complete these 
tests in clinical practice, limiting the diagnosis of 
airway limitation to 56% [91, 92]. Considering that it is 
difficult to identify FEV1 values in structured EHRs, 
an automatic AI tool was designed to mine FEV1 
values in EHRs of 41,689 veterans with COPD. The 
novel AI tool showed an accuracy of 95%, serving as a 
helpful tool for the assessment of COPD severity in 
large patient population [93]. 

Chest computed tomography has also been 
widely used to detect lung texture abnormalities and 
assess the state of COPD. However, a large amount of 
image data cannot be identified with the naked eye, 
highlighting the need for AI/ML systems in this field 
[94]. In a recent prospective study, the pulmonary 
ventilation function of COPD was assessed using a 
support vector machine and logistic regression 
algorithms to analyze chest computed tomography 
images. The assessment model (quadratic support 
vector machine) was based on 87 image features, and 
its validity was tested in 27 COPD patients with an 
accuracy of 88% and an AUC value of 0.82 [95]. While 
these results are encouraging, the sample was small 
and most patients had moderate to severe COPD, 
suggesting that condign mild COPD patients should 
be included in future works. In another study, a 
convolutional neural network algorithm was used to 
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analyze chest computed tomography images from 
smokers and to assess the diagnosis, stage, 
exacerbation, and mortality of COPD patients. 
Smokers in the study were divided into a training 
phase consisting of 8,983 participants and an 
evaluation phase consisting of 1,672 participants, 
which came from COPDGene and ECLIPSE cohorts. 
The algorithm yielded a c-index of 0.856 for COPD 
detection and an accuracy of 51.1% for the exact 
determination of the COPD stage in the COPDGene 
cohort. Moreover, the c-indices for predicting 
exacerbation and mortality were 0.64 and 0.72 in the 
COPDGene cohort, and 0.55 and 0.60 in the ECLIPSE 
cohort [96]. These results indicated better 
performance of the convolutional neural network in 
the COPDGene cohort, while suggesting its 
applicability in stage classification and risk 
assessment of COPD at the population level. 
However, this method may have limited applicability 
because it requires extensive training and 
computational resources. 

Assessing the severity of hospitalized acute 
exacerbations of COPD (AECOPD) patients is also 
beneficial to clinical practice. Hence, a modified 
decision tree algorithm was used to analyze 28 clinical 
features, including demographics, medical history, 
and biomarkers derived from 202 inpatients with 
severe AECOPD and 208 inpatients with mild 
AECOPD. The classification of severe and mild 
patients was based on their admission to the intensive 
care unit. The overall accuracy of the developed 
classifier reached 80.3%, suggesting that it can be used 
to assess the severity of hospitalized AECOPD 
patients [97]; however, the patient’s body mass index 
and other inflammatory cytokines should be included 
in a future prospective study. 

Application of AI/ML to the management and 
monitoring of COPD 

Persistent chronic airway inflammation and 
airflow limitation in COPD can induce the recurrence 
of acute exacerbation and readmission. In order to 
effectively manage COPD patients and monitor the 
disease, several studies have used ML-based 
approaches, which proved to be more effective than 
conventional methods [98-100]. In particular, ML 
algorithms, such as lasso regression and deep neural 
network, were used to analyze 44,929 COPD 
hospitalizations divided into a training (70%) and a 
test (30%) set. The developed models aimed to predict 
readmission within 30 days after discharge and 
showed higher prediction ability (c-statistic = 0.61) 
than the traditional method [98]. Similarly, several 
non-deep and deep ML algorithms were used to mine 
a database containing medical claims data of COPD 

patients in order to predict readmission 30 days after 
discharge, and the optimal AUC was 0.653 [99]. A 
retrospective study in France applied decision tree 
analysis to predict the readmission of 143,006 COPD 
patients older than 40 years. The study not only 
showed that the most relevant risk factor of 
readmission was the number of previous admissions, 
but it also assessed the cost of readmission within six 
months [100]. Although these studies have reported 
several limitations, such as the lack of important 
clinical features, the prediction models could be used 
by clinicians as a reference. 

Persistent airflow limitation along with 
persistent respiratory symptoms make COPD a 
lifelong and life-threatening disease. Thus, it is 
particularly important to monitor variation in lung 
function and prevent persistent airflow limitation. A 
ML model based on random forest was recently 
developed using spirometry data obtained from 4,167 
participants in order to predict individuals most likely 
to develop or have COPD. The primary outcome of 
the model was FEV1, while the secondary outcome 
was the risk of airflow limitation (FEV1/forced vital 
capacity). This model may be a useful tool for 
personalized risk prediction of airflow limitation and 
early prevention of COPD [101]. 

Given the irreversibility of COPD, its early 
detection and diagnosis are crucial. Thus, six ML 
models were used to predict the development of 
COPD based on 101 single-nucleotide polymorphisms 
and 5 clinical characteristics of 441 patients and 192 
normal participants. Among them, 9 single-nucleotide 
polymorphisms were significantly associated with 
this disease, including 6 risk and 3 protective factors. 
In the test set, among the examined models, the 
k-nearest neighbor classifier and logistic regression 
showed the highest precision of 82% and accuracy of 
81%, while the highest sensitivity (recall) of 100% was 
achieved using the multilayer perceptron classifier 
based on the artificial neural network algorithm [102]. 
Although only a few genes and clinical features were 
included, this model may be effective for early 
diagnosis of COPD, compensating for the lack of lung 
function testing among patients in the early disease 
stages. 

ML algorithms were also used to analyze 
functional respiratory imaging for the prediction of 
exacerbation and early identification of AECOPD 
patients [103]. Similarly, a series of ML algorithms 
(logistic regression, random forest, naïve Bayesian, 
support vector machine and k-nearest neighbor) were 
used to mine EHRs data derived from 135 AECOPD 
and 168 control subjects. Further validation and 
comparison of the developed models indicated that 
the support vector machine algorithm showed the 
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best performance (AUC = 0.90) [104]. Consequently, 
ML models, and especially the support vector 
machine model, can help physicians identify 
AECOPD patients and make timely decisions; 
however, the models’ performance should be further 
validated using data from external sources. In another 
approach, a mobile telehealth system was designed to 
improve self-management in COPD and detect acute 
exacerbations of stable COPD patients in a timely 
manner. The system could continuously monitor the 
clinical information of the enrolled patients at home 
and warn of an acute exacerbation three days in 
advance [105]. Although the accuracy was only 40% 
and the study lasted only six months, the 
development of a simple, effective AI-based 
monitoring and warning system deserves further 
investigation. 

The global economic burden of COPD increases 
every year, a trend exacerbated by the aging 
population. In Europe, the total cost of COPD is 
estimated at 56% of annual healthcare expenditure for 
respiratory diseases [106]. To identify and predict the 
costs of COPD patients in China and to provide 
crucial health management information, three ML 
algorithms (logistic regression, random forest, and 
extreme gradient boosting) were used to analyze 54 
different demographic parameters and medical 
information from 780,295 hospitalizations. Although 
all ML models showed excellent predictive efficiency, 
the extreme gradient boosting model showed the 
highest sensitivity (71.3%) and AUC (0.801) [107], 
indicating that it may serve as a valuable predictive 
tool for patients, clinicians, insurance policy makers, 
and other healthcare professionals in developing 
countries. 

Since COPD is one leading causes of death 
worldwide, some studies have also used AI/ML 
technology to predict the risk of mortality in patients 
with COPD [108, 109]. For instance, a total of 30 
clinical, lung function, and chest imaging features 
obtained from 3,900 participants with moderate to 
severe COPD were analyzed to build a random forest 
model for mortality prediction. The novel model 
showed good prediction performance (C-index > 0.7), 
and the optimal risk predictors were the 6-min walk 
test, the FEV1 value, and the pulmonary 
artery-to-aorta ratio [109]. Hence, the novel ML model 
can be a useful tool to guide the early intervention of 
COPD to avoid further deterioration, but more 
external population cohorts are needed for validation. 

Application of AI/ML in COPD treatment 
AI/ML technologies can monitor, integrate, and 

analyze large-scale, heterogeneous clinical 
information from COPD patients; suggest optimal 

individualized treatments; and reduce over- or 
undertreatment caused by clinician errors. However, 
similar to asthma, we found only one study related to 
the application of AI/ML in COPD treatment. In that 
work, several ML models (e.g. sparse 
maximum-margin classifier, ensembles of boosted 
classifier, multitask neural network model) were 
developed based on 153 predictive factors derived 
from telemonitoring of physiological, symptom, and 
baseline data from 135 patients with moderate to 
severe COPD. The data included demography, 
severity, quality of life and hospital admissions, and 
the goal was to detect acute exacerbations and guide 
the corticosteroid therapy of COPD. Irrespective of 
acute exacerbations or corticosteroid use, the optimal 
ML model (multitask neural network) showed better 
AUC values than non-ML methods (0.74-0.77 vs 
0.60-0.66), and its performance was not improved by 
adding weather data [110]. However, the evaluation 
of model performance relied on cross-validation 
rather than multiple independent cohorts, suggesting 
the need for further study. 

Discussion and future directions 
Given the structured data from pulmonary 

function testing and their important role in the 
diagnosis and management of COPD, AI/ML 
techniques were combined with such testing early in 
the field in order to help clinicians assess lung 
function [111]. Other studies have focused on the use 
of AI/ML methods to reduce the reliance on 
pulmonary function testing in clinical practice. Our 
literature review also showed that ML methods have 
been increasingly used in recent years for the 
identification of COPD phenotypes and for the 
prediction of acute exacerbation and death risk. 
However, similar to the limitations of AI/ML 
techniques in asthma, such as single-source 
populations and lack of external validation, the model 
still needs to be validated in more prospective studies 
using a large real-world dataset as well as clinical data 
from continuous monitoring. 

Although there have been significant advances 
in understanding and managing COPD using AI/ML 
methods, there are still many unmet needs. For 
example, airflow limitation is the hallmark of COPD, 
and studies have found that even in patients with 
similar FEV1 levels, there are significant differences in 
the degree of respiratory symptoms, frequency of 
acute exacerbations, and activity endurance [112]. The 
underlying biological mechanism remains unknown, 
indicating the importance of phenotypic studies in 
COPD patients. The current four phenotypes of 
COPD proposed by the Global Obstructive Lung 
Disease Initiative are insufficient for individualized 
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therapy; thus, the development of phenotype-specific 
therapeutic strategies should be extensively studied in 
the future [85]. We expect that the integration and 
analysis of different data using AI/ML technologies 
may provide new insights into the COPD phenotype. 

AI/ML may also play a significant role in the 
treatment and management of patients with stable 
chronic airway diseases. Inhalation therapy is the 
basic therapeutic approach for stable COPD. 
However, stable COPD patients may misuse inhaled 
devices due to the diversity of inhaled drugs and 
devices and the lack of medical assistance. Therefore, 
the application of AI/ML methods for the early 
detection of errors and the improvement of patient 
compliance should be further investigated. AI/ML 
studies are also worth conducting in low-income 
individuals or regions, as they usually exhibit high 
morbidity and experience a heavy financial burden 
due to COPD; in addition, the relatively delayed 
generation of clinical data in their health systems 
leads to poor data integrity. 

Conclusions 
In recent years, the application of AI/ML 

techniques in the medical field has evolved rapidly, 
while several AI/ML tools have been extensively 
studied and applied to chronic airway diseases. This 
review summarizes the recent advances in the 
implementation of AI/ML techniques in the screening 
and diagnosis, classification and assessment, 
management and monitoring, as well as treatment of 
asthma and COPD. Our research supports that 
AI/ML techniques can be used effectively to analyze 
and integrate large, heterogeneous medical data, thus 
assisting physicians in making decisions and guiding 
clinical practice. In addition, these techniques can be 
applied to analyze different responses to treatment, 
providing therapeutic guidance for specific 
phenotypes required in precision medicine, and 
establish a management system for chronic airway 
disease patients during an infectious disease 
epidemic. However, the results about AI/ML tools 
should be interpreted and generalized with caution. 
The AI/ML techniques cannot yet replace clinicians in 
the diagnosis and treatment of chronic airway 
diseases, and further studies are needed to examine 
the effect of several parameters on ML model 
construction and to verify existing findings with 
larger samples and external data sources. 
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