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Abstract 

Natural killer cells, one of the important types of innate immune cells, play a pivotal role in the antiviral 
process in vivo. It has been shown that increasing NK cell activity may promote the alleviation of viral 
infections, even severe infection-induced sepsis. Given the current state of the novel coronavirus 
(SARS-CoV-2) global pandemic, clarifying the anti-viral function of NK cells would be helpful for revealing 
the mechanism of host immune responses and decipher the progression of COVID-19 and providing 
important clues for combating this pandemic. In this review, we summarize the roles of NK cells in viral 
infection and sepsis as well as the potential possibilities of NK cell-based immunotherapy for treating 
COVID-19. 
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Introduction 
Natural killer (NK) cells are an important kind of 

innate immune cell and have been defined as 
“cytotoxic innate lymphoid cells (ILCs) with the 
capability of ‘natural killing’ and antibody-dependent 
cell-mediated cytotoxicity (ADCC)” [1, 2]. ILCs are 
the cells have three main features: absence of 
recombination activating gene (RAG)-dependent 
rearranged antigen receptors; lack of myeloid cell and 
dendritic cell phenotypical markers; and their 
lymphoid morphology [3]. The prototypical ILCs are 
natural killer (NK) cells and lymphoid tissue-inducer 
(LTi) cells [4]. Based on the distinct patterns of 
cytokine production, ILCs could be divided into three 
groups: group 1 ILCs which have the capability to 
produce interferon-γ (IFN-γ); group 2 ILCs which are 
able to produce T helper 2 (TH2) cell-associated 
cytokines, such as interleukin-5 (IL-5) and IL-13; and 
group 3 ILCs which are capable of producing the 
TH17 cell-associate cytokines IL-17 and IL-22 [4]. As 
the mainly ILCs, NK cells play very important roles in 
immunity against virus-infected and transformed 

cells [5, 6]. After being discovered in humans and 
mice in the 1970s, NK cells have received a lot of 
attention, especially in recent years. In humans, most 
NK cells circulate in the peripheral blood and 
represent approximately 15% of peripheral blood 
mononuclear cells (PBMCs) [7]. They are found in 
other tissues/organs as well, such as the spleen, 
lymph nodes, thymus, liver (where NK cells represent 
50% of resident lymphocytes), skin, uterine decidua 
and female reproductive tract [8-10].  

Traditionally, human NK cells are defined by the 
expression of CD56 and CD16 and the absence of CD3 
(CD56+CD16+CD3-) [11-13]. However, NK cells are 
not a single type of cell, many NK cell subtypes are 
produced through a complex development process 
discriminated by the expression levels of particular 
biomarkers. Accumulating studies outline a linear 
model of NK cell development [14], which begins 
with hematopoietic stem cells (HSCs) (CD43+) that 
successively differentiate into lymphoid-primed 
multipotential progenitors (LPMP) (CD34+CD45RA+ 
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CD10+) and common lymphoid progenitors (CLP) 
(CD34+CD45RA+CD117), followed by the 
development of T/NK-committed progenitors with 
an NK1.1+CD117+CD44+CD25+ phenotype. T/NK- 
committed progenitors can develop into T 
lymphocytes in a thymic microenvironment; in 
contrast, when they are co-cultured with bone 
marrow-derived stromal cells, they can develop into 
mature NK cells [15]. After the acquisition of CD94 
expression, T/NK-committed progenitors develop 
into the CD56bright NK cell subset. Following the 
downregulation of CD94, acquisition of CD16 and 
killer immunoglobulin-like receptor (KIR) expression, 
these cells are defined as the CD56dim NK cell subset 
[16]. In the branch model of NK cell development, 
LPMPs could differentiate into CLPs or common 
myeloid progenitors (CMPs), both of which can 
differentiate into NK cell progenitors [14]. CD56bright 

and CD56dim NK cells are the major subsets of NK 
cells, among which canonical CD56dim NK cells 
display higher cytotoxicity toward tumor and infected 
cells with high perforin and granzyme expression 
levels [17]. Meanwhile, CD56bright NK cells have less 
cytotoxicity that secrete low levels of perforin and 
granzymes but produce several cytokines (i.e., IL-5, 
IL-10, IL-13 and GM-CSF) and chemokines (MIP-1α, 
MIP-1β, IL-8 and RANTES) and exert an 
immunoregulatory effect under inflammatory 
conditions [18-20].  

NK cells were presumed to be a relatively 
homogenous lymphocyte population, particularly 
compared to T lymphocytes and B cells. However, 
based on advanced analytical techniques, new 
evidence has indicated that NK cells actually exhibit a 
high level of heterogeneity. The data from mass 
spectrometry/flow cytometry revealed estimated 
6,000-30,000 phenotypic populations of NK cells in the 
peripheral blood of one individual [21]. Although 
researchers have not determined if the numerous 
phenotypes of NK cells are in mature and stable states 
or in a transition state of development, it is 
undeniable that NK cells are highly heterogeneous 
and play a more complex role in immune regulation 
than expected.  

NK cells in viral infection 
 The strategies of NK cells to discriminate 
viruses 

NK cells are major antiviral lymphocytes that 
substantially contribute to the host innate immune 
system and inflammatory cytokine production. In the 
early phase of infections, NK cells rapidly respond to 
pathogens before the development of adaptive 
immune responses [22, 23]. The underlying 

mechanism may relate to the short life span and fast 
regeneration of NK cells [24]. NK cells could be 
activated in response to infection by different viruses 
including Zika virus (ZIKV) [25], influenza virus [26], 
hepatitis C virus [27], dengue virus [28], hantavirus 
[29], and tick-borne encephalitis virus [30]. Biron et al. 
observed increased NK cell proliferation and numbers 
during an acute infection of lymphocytic 
choriomeningitis virus (LCMV) in mice [31]. Using 
high-density RNA sequencing, Lum et al. confirmed 
NK cell activation during acute ZIKV infection. ZIKV 
elicits a robust immune response by NK cells, as 
evidenced by increased IFN-γ production and 
CD107a expression [25]. In an influenza virus 
infection model, NK cells produced swift and strong 
responses in mice, which was proven by the rapid 
production of type I IFNs and inflammatory 
cytokines. The rapid NK cell response efficiently 
controlled early pulmonary viral replication and 
increased survival [32]. These data indicate the 
important roles of NK cells in antiviral immune 
responses. Hantavirus infection can cause 
hemorrhagic fever and strong immune activation, 
leading a 50% mortality rate [29]. Hantavirus could 
also induce increased NK cell expansion in an 
IL-15-depended manner. The hyperactivation of NK 
cells induced by hantavirus may lead to the death of 
uninfected endothelial cells [29], which indicated the 
double-faced effect of NK cells on the host response to 
viral infection. The extensive activation of NK cells 
has also been observed in response to other viral 
infections. Activated NK cells could limit viral spread, 
decrease inflammatory response, and play a 
protective role in acute viral infection [28, 33]. 

In humans, NK cells express several activating 
receptors on their surface, including NKG2D, 2B4, 
NKp80, NKp30, NKp44, NKp46, etc., while 2B4 and 
NKR-P1C (NK1.1) are the activating receptors in mice 
[34]. Relying on these receptors, NK cells could 
rapidly recognize and kill malignant cells and 
virus-infected cells. Meanwhile, inhibitory receptors, 
including KIRs, killer cell lectin-like receptor G1 
(KLRG1), members of the leukocyte 
immunoglobulin-like receptor (LIR) family and the 
NKG2A-CD94 receptor complex expressed in human 
NK cells and Ly49A/C/I/P expressed in mice, 
maintain autoimmune tolerance by binding to human 
leukocyte antigen (HLA), self-MHC-I molecules and 
related proteins or classical cadherins, (E-, N-, and 
R-cadherins) [34-36]. In addition, other inhibitory 
receptors, including CEACAM1, CD300a, and TIGIT 
in human NK cells, can discriminate non-MHC-I 
ligands, which are important for maintaining NK cell 
homeostasis [37-41]. 

Whether NK cells trigger cytotoxicity depends 
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on the delicate balance between inhibitory and 
activating signals. Natural cytotoxicity receptors 
(NCR), including NKp30, NKp44 and NKp46, are the 
dominant activating receptors in NK cells identifying 
virus-infected cells [38, 42]. After binding to their 
ligands, activating receptors recruit immunoreceptors 
such as tyrosine-based activating motif (ITAM)- 
containing adapters, including DAP10, DAP12, 
FcεRIγ and CD3ζ, to transmit downstream signals 
through tyrosine kinases and induce the cytotoxicity 
of NK cells [38]. When activating signals overpower 
inhibitory signals, NK cells will kill target cells. In 
addition, activating receptors are also required for NK 
cell expansion during viral infection [43]. Influenza 
virus hemagglutinin (HA) is the first recognized 
ligand of NCR [38], and poxvirus HA can be 
recognized by NKp30 and NKp46 [44]. The 
HA-neuraminidase (HN) of Sendai virus, 
paramyxoviruses, avian Newcastle disease virus and 
human parainfluenza virus 3 (HPIV3) is the ligand of 
NKp44 and NKp46 [38, 45-47]. NKp44 also recognizes 
the E-protein of dengue virus and West Nile virus 
[48]. Additionally to directly distinguish viral proteins, 
NK cells also distinguish the upregulated NKp44L in 
host cells caused viral infection such as poxviruses, 
herpesviruses and HIV to trigger cytotoxicity [49-51]. 
In addition to NCRs, it was recently proven that 
Toll-like receptor (TLR) can be employed by NK cells 
to engage pathogen-associated molecular patterns 
(PAMPs), such as bacteria-associated peptidoglycan, 
LPS, virus-derived dsRNA and specific DNA with 
CpG motifs [52]. For example, TLR2 is critical for NK 
cell activation in response to vaccinia virus (VV) 
infection by activating the TLR2-MyD88 signaling 
pathway [53]. TLR3 and TLR4 can recognize 
mouse-adapted SARS-CoV and induce inflammatory 
reactions through MyD88 [54] and TRIF-mediated 
pathways [55]. Therefore, it is worth studying 
whether there is an analogous recognition pattern 
between SARS-CoV-2 and host immunocytes. 

NKG2D is the receptor that NK cells used to 
recognize transformed cells and plays an important 
role in anti-tumor immunological surveillance [56]. It 
is also a key player in NK cell-mediated cytotoxicity 
during viral infection. Rather than directly 
recognizing viral antigens, NKG2D recognizes 
various MHC I-like ligands, which are often 
downregulated in virus-infected cells [56, 57]. For 
example, Kaposi’s sarcoma (KS)-associated 
herpesvirus (KSHV) downregulates the expression of 
MHC class I on KSHV-infected cells to avoid being 
recognized by MHC-restricted CD8+ T cells, which 
renders these cells susceptible to being killed by NK 
cells through the induction of NKG2D-mediated 
activating signaling [58]. UL16-binding protein 

(ULBP), which binds to the human cytomegalovirus 
(HCMV) glycoprotein UL16, is another key ligand of 
NKG2D [59]. After HCMV infection, ULBPs 
expressed by infected cells interact with 
NKG2D/DAP10 to trigger NK cell-mediated 
cytotoxicity [60]. Each NK cell receptor interacts with 
several distinct ligands, but most NKG2D ligands are 
still unknown [56, 61]. DNAM-1 (CD226) is another 
important NK cell receptor that mediates anti-tumor 
immunity [62]; it is also important for NK cells to 
discriminate viruses. The known ligands of DNAM-1 
are poliovirus receptor (PVR) (CD155) and Nectin-2 
(CD112), which are latent entry receptors of several 
viruses to invade cells [63, 64]. Similar to NKG2D, 
DNAM-1 discriminates ligands on virus-infected cells 
and triggers NK cell cytotoxicity. TIGIT is a receptor 
from the same immunoglobulin-like superfamily as 
DNAM-1, but it exerts inhibitory effects on NK cells 
[65]. TIGIT binds to the same ligands as DNAM-1 on 
target cells through a competitive interaction and 
counteracts NK cell activation [66].  

To sum up, there are mainly two strategies of NK 
cells to be activated in viral infection: one is NK cells 
activating receptors distinguish the viral protein such 
as HA, HN and E-protein directly; the other way is the 
activating receptors distinguish the changed 
expression of MHC-1 and ULPBs on virus infected 
cells. Subsequently, the activating signal could be 
transmitted by activating receptors to trigger NK cells 
cytotoxicity. The patterns of NK cell activation in viral 
infection are illustrated in Figure 1. 

Viral mechanisms to escape NK cell 
surveillance 

During the constant battle with the host immune 
system, viruses have evolved multiple strategies to 
evade elimination and induce chronic infection. 
Several viruses, including HCMV [67, 68], mouse 
CMV [69, 70], zoonotic orthopoxviruses [71], and HIV 
[72], escape NK cell-mediated elimination by 
downregulating the expression of NKG2D ligands. 
For instance, HCMV downregulates the expression of 
the NKG2D ligands ULBP1, ULBP2, MICB and MICA 
on infected cells by expressing the viral glycoproteins 
UL16 and UL142 [68, 73]. Similarly, in individuals 
with acquired immune deficiency syndrome (AIDS), 
HIV-1 decreases the cell surface expression of MICA, 
ULBP1 and ULBP2 in infected cells through Nef 
protein, which decreases the susceptibility of the virus 
to NK cell-mediated lysis [72]. KSHV downregulates 
NKp44L expression on infected cells through the 
ORF54 gene-encoded protein to escape NK 
cell-mediated killing [74]. Furthermore, viruses have 
developed another strategy, upregulating the 
expression of inhibitor receptor ligands to block NK 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

3239 

cell activity. For instance, through the activation of the 
RIGI-IRF3 pathway mediated by IFN-β, ZIKV 
increases the expression of MHC-I molecules on 
infected cells [75]. As mediated by the viral protein 
MATp1, mouse cytomegalovirus (MCMV) rescues the 
expression of some MHC-I molecules on infected 
cells, which are engaged by the inhibitory receptor 
Ly49. The rescued self MHC-I molecules exhibit 
increased affinity for Ly49 and inhibit signaling in NK 
cells [76]. 

In addition to downregulating the ligands of NK 
cell-activating receptors and upregulating the ligands 
of NK cell-inhibitory receptors on infected cells, the 
viruses, particularly those readily induce chronic 
infections, directly impair NK cell cytotoxicity by 
altering their phenotypes and functions. For example, 
in chronic hepatitis virus infection, hepatitis C virus 
(HCV) downregulates NKG2D expression on 
circulating NK cells through an NS5A-mediated 
pathway and downregulates NKp30 expression by 
increasing the levels of an antagonistic NKp30 ligand 
on HCV-infected cells, which subsequently impairs 
NK cell-mediated cytotoxicity, ADCC and IFN-γ and 
TNF-α production [77, 78]. In the same way, during 
chronic hepatitis B virus (HBV) infection, HBV 
releases the antigens HBsAg and HBeAg, which 

directly block NK cell activation, cytokine production 
and cytotoxic granule release by suppressing the 
STAT1, NF-κB and p38 MAPK pathways [79]. 2B4 is a 
CD2-related receptor belonging to the signaling 
lymphocyte activation molecule (SLAM) family [80], 
that is expressed by NK cells, γδT cells, basophils, 
monocytes and a subset of CD8+αβ T lymphocytes 
[81]. In patients with persistent HBV infection, HBV 
downregulates the expression of NKG2D and 2B4 on 
NK cells by increasing TGF-β1 expression, 
subsequently impairing NK cell-mediated 
cytotoxicity and IFN-γ production [82]. In another 
strategy, human T-cell leukemia virus type 1 
(HTLV-1) downregulates the expression of 
intercellular adhesion molecule 1 (ICAM-1) and 
ICAM-2 on infected CD4+ T cells, which subsequently 
prevents NK cells from adhering to HTLV-1-infected 
cells and prevents NK cell-mediated death [83]. 
Furthermore, Japanese encephalitis virus (JEV) 
inhibits NK cell proliferation by inducing endothelial 
cell shedding of sHLA-E, which inhibits IL-2- and 
PMA-mediated ERK 1/2 phosphorylation in NK cell 
lines [84]. Viruses can also activate 
immunosuppressive cells, such as myeloid-derived 
suppressor cells (MDSCs), to impair NK cell activity 
and block IFN-γ production [85].  

  

 
Figure 1. NK cell activation during viral infection. 
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Viral infection-related cytokines and signaling 
pathways in NK cells  

Cytokines and signaling molecules play 
important roles in the activity and function of NK 
cells under physiological and pathological conditions. 
Specifically, IL-2, IL-12, IL-15 [86], IL-18, and IFN-γ 
are the most important cytokines that are secreted by 
immunocytes and infected tissues [87] to regulate NK 
cell-mediated cytotoxicity [86]. For example, in VV 
infection, efficient NK cell activation depends on 
dendritic cells (DCs) and IL-18 signaling, as well as 
the TLR2-MyD88 signaling pathway [53, 88]. 
Meanwhile, both intrinsic and extrinsic STAT1 
signaling are indispensable in NK cells responding to 
VV infection [89]. Furthermore, integrin α2β1 dimers 
and IFN-α are required for optimal NK cell expansion 
during viral infection [90, 91]. IFN-α induces the 
expression of its downstream transcription factors, 
including STAT1, STAT2 and IRF9, and these 
transcription factors can induce the transcription of 
hundreds of IFN-stimulated genes and the “antiviral 
state” in NK cells [92]. Recently, adrenergic signaling 
has been proposed to play a novel role in regulating 
circulating lymphocytes responding to viral infections 
[93]. Diaz-Salazar et al. reported that depending on 
IL-12 and STAT4 signaling, NK cells upregulate Adrb2 
(which encodes the β2-adrenergic receptor) to 
maintain their proliferative capacity during MCMV 
challenge [93]. It is beneficial to decipher the 
underlying complicated signaling networks of NK cell 
activation for developing strategies to manipulate NK 
cell function under viral infection, control viral 
replication in the early stage and prevent severe 
inflammatory reactions, even sepsis.  

Individuals experiencing severe viral infection 
caused by herpes virus [94], respiratory syncytial 
virus [95], HCMV, Epstein-Barr virus (EBV), herpes 
simplex virus (HSV), HBV, HCV and HIV [33, 96] 
often show impaired NK cell functions. However, NK 
cells can be a double-edged sword by exerting the 
unwanted effect of tissue damage in severely infected 
patients. Fu et al. found that NK cells can mediate 
hypersensitivity and the pathogenesis of 
HCV-induced liver injury in mice [97]. By blocking 
NKG2D and ligand interactions, liver injury was 
completely prevented in mice model of hepatitis [98]. 
In a model of an acute viral infection of the central 
nervous system (CNS), mice deficient in NK 
cell-mediated cytotoxicity were more resistant to a 
lethal virulent Semliki Forest virus (vSFV) infection 
than wild-type mice, suggesting that the cytolytic 
activity of NK cells may be detrimental under specific 
circumstances [99]. 

In conclusion, multiple studies have revealed the 

intricate functions of NK cells in the immune response 
to viral infection. Undoubtedly, the expression levels 
of various NK receptors play important roles in the 
differential dynamics of NK cell activation and the 
viral infection process. Intranasal mouse hepatitis 
virus type 1 (MHV-1) is a group 2 respiratory CoV, 
and its intranasal infection induces a lung pathology 
in mice which is similar to the pathological state of 
patients with severe acute respiratory syndrome 
(SARS). Using this model, Khanolkar et al. found the 
contributions of NK cells and type I IFN-mediated 
signaling to reducing morbidity and mortality of 
MHV-1-infected mice [100]. In mice infected with 
mouse hepatitis virus type 3 (MHV3), a coronavirus, 
the production of NK cells was significantly impaired, 
which induced the occurrence of fulminant hepatitis 
[101]. In another study, pigs were pre-infected with 
porcine reproductive and respiratory syndrome virus 
(PRRSV) to simulate immunosuppressive respiratory 
disease. Following repeated infection with porcine 
respiratory coronavirus (PRCV), significant 
reductions in innate NK cell-mediated cytotoxic 
functions were observed in PRRSV and PRCV 
co-infected pigs [102]. These results indicated the 
potential role of NK cells in the host immune response 
to combat CoV infections [100, 102]. 

NK cells in sepsis  
Sepsis is a pathological process that is induced 

by a severe systemic infection accompanied by a 
dysregulated immune response and overexpression 
of inflammatory factors, which exerts substantial 
negative effects on health, including damage to 
multiple organs [103, 104]. Severe sepsis will induce 
hypotension and hypoperfusion, and cause lactic 
acidosis, oliguria, and acute respiratory distress 
syndrome (ARDS) [105], resulting in an 
approximately 26% mortality rate [106].  

Many pathogens including bacteria, fungi and 
viruses can induce sepsis; however, more than 70% of 
sepsis cases are caused by bacterial infections [107, 
108]. There are no definite diagnostic criteria for 
discriminating viral sepsis and bacterial sepsis to date, 
which may lead to unnecessary antimicrobial use 
[107]. Sporadic studies indicated that elevated 
procalcitonin levels are more relevant to bacterial 
infections than viral infections, though related 
immunological profile data are still scarce for viral 
sepsis [107, 109]. Except for the well-known 
overactivation of the immune system during the 
beginning of sepsis, sepsis-induced immuno 
suppression cannot be ignored. It was shown that 
there is a decreased quantity or increased apoptosis of 
T and NK cells accompanied by reduced INF-γ 
production in the 'late phase' of sepsis, which can 
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cause secondary infection and even death [110, 111]. 
Relying on the recognition of different PAMPs 

by TLRs and NCRs [52, 112, 113], NK cells play very 
complicated role in sepsis. TLR-4 (Toll-like receptor 4) 
is a known receptor that recognizes 
lipopolysaccharide (LPS) from gram-negative 
bacteria. NK cells display low TLR-4 expression on 
their surface and moderate TLR4 expression in the 
cells, which can be activated by PAMPs to produce 
IFN-γ [114]. In a Pseudomonas aeruginosa-induced 
mouse pneumonia model, splenic NK cell populations 
were increased accompanied by increased IFN-γ 
secretion [115]. In another mouse model of sepsis that 
formed by cecal ligation and puncture (CLP) followed 
by LPS injection, the number of NK cells with low 
IL-18R expression levels was increased in the mouse 
liver [116]. Mouse models depleted of NK cells are 
ideal tools to study NK cell function. In mice infected 
with pulmonary nontuberculous mycobacteria 
(NTM), NK cell depletion increased the bacterial load 
and mortality rate [117]. However, in another study, 
compared to their wild-type (WT) counterparts, NK 
cell-deficient mice (IL-15-/- mice) showed higher 
survival rates and lower levels of pro-inflammatory 
cytokines [118].  

As the main killing proteins secreted by NK cells, 
the role of granzymes in sepsis should not be ignored. 
Granzyme-deficient mice (both gzmA-/- and gzmM-/-) 
showed decreased production of pro-inflammatory 
cytokines compared to WT mice, which are unlikely 
to develop endotoxic shock [119]. In addition to their 
cytotoxic effects, granzymes play an important role in 
regulating the secretion of pro-inflammatory 
cytokines [120, 121], and this may exacerbate LPS- or 
endotoxin-mediated cytokine secretion during 
endotoxic shock [122].  

Animal model-based findings revealed the 
complicated roles of NK cells in the 
immunopathogenesis of sepsis. However, the existed 
experiments had produced contradictory results [123, 
124]. There are complex reciprocal regulatory 
pathways between NK cells and other immune cells, 
including DCs, macrophages, and neutrophils, as well 
as several cytokines involved during the sepsis 
process. Researchers have not been able to determine 
whether NK cells exert a positive or negative effect on 
sepsis. All the data should be interpreted carefully 
because of the heterogeneity between mouse models 
and humans as well as between mouse models 
themselves.  

In a clinical study, unfavorable outcomes 
including death were observed in patients with severe 
sepsis whose circulating NK cell number was less 
than 20% of the total lymphocyte population. An early 
increase in the circulating NK cell population will 

increase the survival rate of patients [125]. In another 
extensive clinical trial, Gogos et al. found that patients 
with sepsis have a significantly lower number of 
circulating NK cells than patients with 
community-acquired pneumonia (CAP) [126]. 
According to Forel et al., the number of NK cells 
(CD56+CD3–) in blood samples collected from patients 
in the ICU is significantly reduced during all stages of 
sepsis and shows indiscriminate features such as 
degranulation, as indicated by CD107 or LAMP-1 
(lysosomal-associated membrane protein-1) 
expression and decreased cytotoxicity compared to 
NK cells from healthy controls [127]. Furthermore, 
data from an antibody-dependent cell cytotoxicity 
(ADCC) assay showed that NK cells from patients 
with sepsis secrete low levels of IFN-γ compared with 
those from their healthy counterparts [127].  

In addition to the decreased number, impaired 
NK cell function has also been observed in clinical 
studies. As shown in the study by Feng et al., NK cell 
cytotoxicity dramatically decreased during sepsis, 
which may result from reduced CD3−CD56+ NK cell 
cluster differentiation, a shift in the phenotype of 
NK-activating receptors toward inhibitory receptors, 
and impaired cytokine production in septic patients 
[128]. Consequently, the phenotypic changes and 
impaired functions of NK cells might be one of the 
underlying causes of immunosuppression during 
sepsis [128]. Nevertheless, another study reported 
inconsistent results, in which NK cells isolated from 
patients with sepsis released larger amounts of IFN-γ 
compared to healthy controls after treatment with LPS 
[129]. Furthermore, Andaluz-Ojeda et al. found that an 
increased number of circulating NK cells (> 83 
cells/mm3) is correlated with early death in patients 
with sepsis [130]. The levels of granzyme proteins 
(granzyme A, granzyme B, and granzyme K) are all 
increased in NK cells from patients experiencing 
sepsis and septic shock who suffer from multiple 
organ dysfunction, with an increased mortality rate 
[131-133]. Thus, plasma granzyme levels may be a 
potential biomarker determining the severity of sepsis 
[104]. Figure 2 shows the complex roles of NK cells in 
sepsis.  

The significant similarities of immune profile 
between sepsis and COVID-19 have been reported by 
Lopez-Collazo et al. [134], or in other words 
SARS-CoV-2 may be one of the etiological agent 
causative of sepsis [135]. The common symptoms of 
sepsis and COVID-19 include excessive inflammation 
and cytokine storms [136], chronic basal inflammation 
state [136], high granulocyte-macrophage (GM)-CSF 
levels in circulating lymphocyte populations, 
excessive macrophage activation, depletion of 
lymphocytes, as well as the overexpression of some 
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immune checkpoints [134]. C5a is an inflammatory 
protein, which can bind to the immunocytes 
expressing C5aR including NK cells to induce the 
production of various cytokines and chemokines 
[137]. A recent study showed that the serum levels of 
soluble C5a are increased in SARS-CoV-2 patients 
[138], which indicate the NK cells may involve in the 
SARS-CoV-2 induced cytokine storm by C5a 
regulation. However, another latest study based on 
single cell sequencing indicated that peripheral 
monocytes may not contribute to the putative 
cytokine storm in COVID-19 [139]. 

The exact role of NK cell in sepsis is very difficult 
to interpret clearly. First, researchers have not been 
able to determine whether NK cell dysfunction is a 
cause or a consequence of sepsis. When other factors 
induce NK cell dysfunction, exhausted NK cells may 
not control the progression of sepsis timely and can 
reverse patient deterioration, or the terrible 
pathological conditions in sepsis patients could 
induce NK cell dysfunction. Analogously, 
hyperactivation of NK cells may be interpreted as the 
cause of sepsis or the compensatory phenomenon 
because NK cells actually control sepsis effectively. 
Although specific effects of NK cells on viral infection 
and sepsis have not been clearly elucidated, we can 
still make a bold assumption that highly active NK 
cells may effectively control viral infection in the early 

stage by directly killing infected cells or promoting 
the infiltration of other immune cells, such as 
neutrophils, T lymphocytes and B cells, into the 
lesion. However, if the initial infection is not 
controlled timely and effectively, the hyperactivated 
NK cells will produce excessive levels of 
pro-inflammatory factors by releasing granzymes, 
subsequently causing organ injury and even death. 
Without a doubt, this assumption needs more 
evidence to be proven or disproven. Additional 
carefully designed studies should be performed in 
future to further elucidate the exact role of NK cells in 
sepsis. For example, if the feasibility and difficulty are 
not being regarded, the NK cell profile, including the 
quantity, activity and the ability of NK cells to 
produce cytokines and cytotoxic granules as well as 
their specific subtypes, should be monitored 
constantly in patients with a severe infection and even 
sepsis. More importantly, clinicians should monitor 
and analyze the changes in other immunocytes and 
the complex interactions of each type of immunocyte 
in the pathological process of sepsis. Single-cell 
sequencing, a state-of-the-art method with apparent 
advantages, would be a powerful tool for decoding 
the specific functions of NK cells and complex mutual 
regulation with other immune cells in patients with 
sepsis. 

 

 
Figure 2. NK cells are key players in the immunopathogenesis of sepsis patients and mouse models. 
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Table 1: NK cell-based clinical trials in CAR NK cells from ClinicalTrial.gov (Last accessed: April 28, 2021) 

Conditions Therapeutic(s) Phase Patients Trial identififier Status 
HIV Infections Haploidentical NK cell; N-803 Phase 1 9 NCT03899480 Completed 
HIV NK cells; IL-2 Phase 1 4 NCT03346499 Completed 
Corona Virus Infection T memory cells; NK cells Phase 1|Phase 2 58 NCT04578210 Recruiting 
SARS-CoV-2 CYNK-001 cells Phase 1|Phase 2 86 NCT04365101 Recruiting 
CMV Viremia|Transplantation 
Infection 

expanded NK cells Not available 10 NCT04320303 Recruiting 

Novel Coronavirus Pneumonia NK Cells Phase 1 30 NCT04280224 Recruiting 
Covid19 Off-the-shelf NK Cells (KDS-1000) Phase 1|Phase 2 54 NCT04797975 Not yet 

recruiting 
Covid19|Sars-cov 2 atural Killer Cells infusion Phase 1 24 NCT04634370 Not yet 

recruiting 
COVID Allogeneic NK transfer Phase 1|Phase 2 10 NCT04344548 Not yet 

recruiting 
COVID-19 NK cells,IL15-NK cells,NKG2D CAR-NK cells,ACE2 

CAR-NK cells,NKG2D-ACE2 CAR-NK cells 
Phase 1|Phase 2 90 NCT04324996 Recruiting 

 
 

NK cell-based immunotherapy for viral 
infection 

The pivotal role of NK cell in monitoring and 
controlling tumors has been extensively confirmed, 
and NK cell-based tumor immunotherapy has been 
extensively developed, including autogenous or 
allogeneic NK cell expansion, gene modification of 
NK cells and various chimeric antigen receptor (CAR) 
NK technologies (reviewed by Fang et al.) [140]. 
Accordingly, NK cell-based immunotherapy is 
presumptive to be effective at controlling and 
relieving infections. Because interleukins exerting a 
positive regulatory effect on NK cells, it may be worth 
determining whether they could increase NK cell 
activity during severe infection. Studies have 
indicated that IL-23 is beneficial for reverting 
sepsis-associated immunosuppression by activating 
both NK cells and DCs, and further stimulating 
protective T cell immune responses [141, 142]. 
Additionally, IL-12 and IL-27 may have analogous 
therapeutic potential with IL-23 for alleviating sepsis 
[142, 143]. PD-1 (programmed death receptor-1), also 
named CD279, is a well-known immune checkpoint 
that is mainly expressed on T lymphocytes and NK 
cells. By initiating lymphocyte apoptosis, PD-1 
induces immunosuppression and prevents 
hyperactivation of lymphocytes [144]. Both PD-1 and 
its ligand PD-L1 (programmed death receptor ligand 
1) are highly expressed on lymphocytes from patients 
with sepsis, which may partially explain the 
sepsis-associated immunosuppression and increased 
mortality [145-146]. Therefore, PD-1 antibodies have 
been used to treat sepsis in mouse models. Shindo et 
al. found that anti-PD-L1 peptide compound 8 
treatment doubled the survival rate of mice with 
sepsis [148]. Chang et al. and Patera et al. assessed the 
therapeutic effects of anti-PD-1 and anti-PD-L1 
antibodies separately by isolating and culturing 

lymphocytes from septic patients in vitro. These 
antibodies increased the survival rate of immunocytes 
and the production of IFN-γ and IL-2 by NK cells [145, 
149]. Corresponding clinical experiments are in 
progress (ClinicalTrial.gov# NCT02576457). In 
addition to the PD-1/PD-L1 recognition system, other 
immune checkpoints, such as cytotoxic T lymphocyte 
antigen-4 (CTLA-4), T cell membrane protein-3 
(TIM-3), lymphocyte activation-gene-3 (LAG-3) and 
2B4, are upregulated during the course of sepsis [150]. 
Studies focused on the therapeutic effects of these 
immune checkpoints on sepsis have been conducted 
in mouse models [151, 152], and clinical trials have 
shown promising results [153]. Therefore, the specific 
inhibitors or antibodies targeting immune 
checkpoints may be ideal candidates for ameliorating 
and treating sepsis.  

CAR is a strategy in which immune cells (T 
lymphocytes or NK cells) were engineered by gene 
fusion and transfection to express a CAR protein that 
constitutes an antigen-binding region (scFv), 
transmembrane region and signal transduction 
region. The scFv fragment is extracellularly presented 
to recognize and bind tumor antigens, and the 
intracellular signal transduction region transmits 
activating signals in immunocytes [154]. CAR therapy 
significantly improves the killing effects of immune 
cells on tumors and has been used in tumor 
immunotherapy clinically. In addition to tumor 
therapy, CAR-T cell-based treatments targeting severe 
viral infections, such as HIV in AIDS [155-159, 
ClinicalTrial.gov# NCT03240328 and NCT01013415], 
HBV infection [160-162] and infection with HCMV 
[163], have been developed and analyzed in animal 
models and clinical trials. In an in vitro trial, canine 
NK cells isolated from PBMCs of normal dogs were 
expanded; these cells produced large amounts of 
IFN-γ and exhibited dose-dependent cytotoxicity 
toward canine distemper virus (CDV)-infected Vero 
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cells. Pretreatment with anti-CDV serum from 
hyperimmunized dogs enhanced the ADCC of NK 
cells against CDV-infected Vero cells. These results 
emphasize the potential effect of expanded NK cells 
for treating CDV infection [164]. All of these examples 
illuminate the possibility of using NK cell-based 
immunotherapy strategies, including in vitro 
amplification and each type of CAR method, for 
treating severe infections and even sepsis. To date, 
NK cell or CAR-NK cell-based immunotherapy for 
viral infection are emerging gradually and the related 
clinical trials were summarized in Table 1.  

Fighting COVID-19, do NK cells provide 
opportunities? 

At the end of 2019, the novel coronavirus 
(SARS-CoV-2) emerged and has rapidly spread across 
the world. The COVID-19 has killed more than three 
million individuals globally till April 2021. In China, 
the mortality rate is substantially increased to 6.4% 
when the patient is greater than 60 years old 
compared to lower than 1% in young people [165]. 
When the patient is aged 80 years or older, the 
mortality rate increases to 18.4% [165]. It has been 
proven that aging can induce immune dysregulation 
by decreasing cell-mediated immune function and 
humoral immune responses [166-168]. Specifically, 
with aging, NK cells showed the profile of decreasing 
of immature CD56bright NK cells and the increasing of 
highly differentiated CD56dimCD57+ NK cells [169, 
170], as well as downregulation of NKG2A [171] and 
concomitant the upregulation of KIR family members 
[172]. This phenomenon indicated the impaired 
proliferation ability and increased cytotoxic capacity 
and ADCC of NK cells in elder people [173]. 
Therefore, the role of NK cells in significant 
correlation between aging and death in COVID-19 is 
still waiting to be revealed. Other factors that 
significantly increasing the mortality rate are various 
basic diseases, including hypertension, diabetes, 
respiratory system, renal and lung diseases [174]. The 
main causes of death include excessive inflammation 
induced by a proinflammatory cytokine storm, 
disseminated intravascular coagulation (DIC) and 
thrombus-induced pulmonary dysfunction that 
subsequently induce ARDS [174] and multiple organ 
dysfunction (MODS) [175]. Similar to SARS and 
MERS (Middle East respiratory syndrome 
coronavirus) [176], a reduced number of lymphocytes, 
particularly CD4+CD8+ T lymphocytes, has been 
detected in patients during the early stage of 
COVID-19; reduced lymphocytes are also an 
important signal predicting disease severity [177, 
178].  

Clinical study reported that NK and CD8+ T cells 

were both found to be markedly decreased in patients 
with SARS-CoV-2 infection [179, 180]. In addition, 
asymptomatic patients showed higher counts of 
lymphocytes, T cells, B cells, and NK cells compared 
to the symptomatic COVID-19 patients [181, 182]. 
Specifically, NK and CD8+ T cell activity was 
impaired by overexpression of the inhibitory receptor 
NKG2A in COVID-19 patients [179, 180]. In a latest 
studies, NK cells were proved activated across 
distinct subsets in peripheral blood of COVID-19 
patients by using multi-color flow cytometry and 
single-cell RNA sequencing, which was hallmarked 
by high expression of perforin, NKG2C, and Ksp37 
[183]. However, another study using single-cell 
sequencing indicated that both CD56dim and CD56bright 
NK cells were depleted in COVID-19 samples as well 
as NK cells appeared exhausted based on expression 
of LAG3, PDCD1 and HAVCR2 in patients with 
COVID-19 [139]. The in vitro study indicated the 
SARS-CoV-2 can induce NK cells exhaustion via Spike 
1 protein binding to the HLA-E of lung epithelial cells 
and trigger HLA-E/NKG2A pathway [184]. These 
results indicate the important role of NK cells in 
pathological COVID-19 processes. Nevertheless, more 
studies focusing on the role of NK cells in 
SARS-CoV-2 infection are urgently needed, which 
will be beneficial for developing effective 
countermeasures for SARS-CoV-2 infection. 

Last but not least, few pioneering clinical trials 
using NK cells to treat COVID-19 patients are ongoing 
(ClinicalTrial.gov# NCT04344548, NCT04365101, 
NCT04280224), as well as an NKG2D-ACE2 CAR-NK 
based trail (ClinicalTrial.gov# NCT04324996). These 
works will be expected to give direct and strong 
evidence on the effect of NK cell therapy in combating 
COVID-19. However, some issues should be 
considered; for example, when is the optimum time to 
administer NK cells to patients? If uncontrolled 
inflammation has occurred, the increased NK cells 
and their hyperactivation may further exacerbate the 
inflammatory response and cause more damage. The 
immune environment and cytokine milieu in patient 
are unique, which may induce unknown and 
uncontrollable immune reaction of NK cells. 
Additionally, NK cells from COVID-19 patients must 
be utilized in biosafety level 3 facilities, which are 
rare, and the operation may increase the infection risk 
to operators.  

Another strategy is to develop an NK cell-based 
vaccine targeting SARS-CoV-2. Memory is one of 
feature of adaptive immune responses of 
antigen-specific T and B lymphocytes, which provides 
the ability to evoke a rapid and effective response to 
secondary infections [185]. The ‘memory function of 
NK cells’ is a concept that has only been proposed 
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recently, stating that NK cells have memory-like, 
antigen-specific, long-lived adaptive immune 
responses [186, 187]. Evidence shows that in T- and 
B-cell-deficient mice, adoptive transfer of 
virus-sensitized hepatic NK cells into naive recipient 
mice enhanced the survival of the mice after lethal 
challenge with the same sensitizing virus [188]. In 
humans, there are epigenetic modifications and 
antibody-dependent expansion of memory-like NK 
cells in HCMV-infected individuals [189]. Likewise, 
NK cells from CMV- and EBV-infected individuals 
have the ability to recognize autologous B cells loaded 
with virus-derived peptides and exhibit 
antigen-specific cytotoxicity [190]. Based on these 
findings, it is worth determining whether 
administration of pre-expanded autogenous NK cells 
challenged with inactivated SARS-CoV-2 or its spike 
protein provide a specific amount of immunity and 
protection. More studies are needed to elucidate the 
pathology of COVID-19 and the interaction of 
SARS-CoV-2 with immunocytes. Animal models that 
reproduce the clinical features of COVID-19 are 
developing fast, which might significantly help 
people to combat this disease [191]. 
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