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Abstract 

Emerging evidence suggests that immune-inflammatory processes are key elements in the physiopathological 
events associated with traumatic brain injury (TBI). TBI is followed by T-cell-specific immunological changes 
involving several subsets of T-helper cells and the cytokines they produce; these processes can have opposite 
effects depending on the disease course and cytokine concentrations. Efforts are underway to identify the 
T-helper cells and cytokine profiles associated with prognosis. These predictors may eventually serve as 
effective treatment targets to decrease morbidity and mortality and to improve the management of TBI 
patients. Here, we review the immunological response to TBI, the possible molecular mechanisms of this 
response, and therapeutic strategies to address it. 
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T cells and traumatic brain injury 
Traumatic brain injury (TBI), whose proximate 

cause is mechanical trauma, is the leading specific 
cause of death and disability worldwide [1]. It is 
generally accepted that the majority of brain damage 
caused by TBI is inflicted by secondary effects of the 
injury, rather than by the primary injury itself [2]. 
Secondary injury, which is progressive and lasts for a 
long time, contributes significantly to several post-TBI 
pathological events, including an exacerbated 
inflammatory response with subsequent brain edema, 
neuronal apoptosis, and activation of local immune 
cells, including microglia and astrocytes [3]. 
Additionally, breakdown of the blood–brain barrier 
(BBB) allows immune cells and molecules to enter the 
injured brain tissue, where acute and chronic 
inflammatory reactions to TBI are aggravated [4, 5]. 
Elevated circulating levels of inflammatory cytokines 
lead to multiple organ dysfunction syndrome and 
death [6]. Immune-inflammatory processes are 
integral to secondary brain damage [7], in which 
intracerebral and peripheral immune cells are 
activated [4, 8] and inflammatory cytokines are 
recruited [9]. Studies TBI models also reveal that TBI 
can result in immunosuppression. Immune cells, 
especially lymphocytes, decreased within several 

hours after TBI, indicating the possible 
pathophysiological effects [10]. The crosstalk between 
the immune and neurological systems was closely 
correlated with clinical outcome [11]. The presence of 
concomitant symptoms such as non-neurologic organ 
injury, neuropsychiatric symptoms and infections 
make TBI a systematic injury. Ongoing research to 
reveal post-traumatic immune process may aid in 
developing effective therapeutic strategies for patients 
with TBI [12]. Sex and age were reported to influence 
the immune response after TBI. Researchers 
demonstrate that aged rats exhibited more robust 
microglial responses, exaggerated secondary neuro-
inflammation, and worsens neurological outcomes 
after TBI [13, 14]. And TBI leads to a more aggressive 
neuroinflammatory profile in male compared to 
female mice, suggesting a rapid and pronounced 
peripheral inflammatory response and cortical 
microglia/macrophage activation [15, 16]. 

Increasing evidence indicates that the immune 
system is targeted following TBI [17, 18]. Neutrophils 
are first recruited to the site of the damaged brain [19], 
followed by local activation of microglia and 
astrocytes as well as the recruitment of other 
peripheral immune cells, including monocytes, 
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natural killer cells, dendritic cells, and T lymphocytes 
[20]. T lymphocytes, critical constituents of the 
peripheral immune system, include many subsets, 
including CD3+, CD4+, and CD8+. In TBI models, 
CD4+ T cells first increase and then decrease, while 
CD8+ T cells have the opposite tendency [21, 22]. 
Previous data suggest that autoreactive T cells have 
beneficial effects on tissue repair following brain 
injury [23-25]. Regarded as T-helper (Th) cells, CD4+ 
T cells play a central role between antigen presenting 
cells and B cells. Although Th cells were previously 
thought to be detrimental [26], several studies have 
reported a beneficial effect after traumatic injury [27, 
28]. Evidence shows both potentially destructive 
(causing autoimmune disease [29]) and beneficial 
(resisting post-traumatic degeneration [30]) effects of 
Th cells in the peripheral immune system after 
trauma. However, no clear relationship has been 
established between the levels of T cells and the 
clinical outcome following TBI. 

In this review, we summarize the distinct 
cellular and molecular events in TBI and highlight the 
role of Th cells and their cytokines involved in the 
immune-inflammatory processes associated with 
brain damage and recovery. 

T cells and their derived cytokines 
Th cell subsets, which express CD4 and MHC 

class II molecules on their surface, begin as naive, 
uncommitted Th precursors (Th0). Once stimulated 
by antigen presenting cells, Th cells appear to 
specifically differentiate into T cell subsets, including 
Th type 1 cells (Th1), Th type 2 cells (Th2), Th type 17 
cells (Th17), and regulatory T (Treg) cells [1, 31]. For 
example, Th0 cells develop into Th1 cells when 
exposed primarily to interleukin (IL)-12 and 

interferon (IFN)-γ, whereas they differentiate into Th2 
cells when stimulated primarily by IL-4 [32]. IL-6, 
transforming growth factor (TGF)-β, and IL-1β are 
vital factors in Th17 cell development [33] while IL-2 
is responsible for Treg cell development [34]. 
Cytokines, a group of messengers released by Th cells, 
are involved in the subsequent pathophysiological 
processes that occur in the injured brain [35, 36]. 
Cytokines have pro- and anti-inflammatory effects 
and play dual roles in secondary brain damage. Both 
animal and clinical studies have suggested a 
correlation between TBI and pro- and anti- 
inflammatory cytokines [37]. 

Alterations in various T cell subsets as well as 
their own signature cytokines have been shown to 
influence immune-inflammatory responses and are 
associated with the pathogenesis of TBI. Infiltrating 
T-lymphocytes, cross the BBB via distinct 
mechanisms, are likely to be associated with brain 
edema and other acute responses to TBI [38], while 
activated CD4+T cells may exacerbate the acute 
damage [39]. Studies on the novel immuno-
suppressive agent FTY720 showed that FTY720 can 
significantly reduce the number of circulating 
lymphocytes and attenuate the invasion of immune 
cells to damaged brain parenchyma [40-42], decrease 
infiltrating T cells and NK cells but increase the 
percentage of Treg cells and IL-10 concentration [43]. 
Previous studies have reported the central and 
peripheral imbalance [44] of Th cells during acute and 
chronic phases [45] caused by different severities of 
TBI [21, 46, 47]. Many inflammatory mediators in the 
peripheral immune system have been investigated in 
TBI patients to identify early biomarkers with 
diagnostic and prognostic value. Although non- 
specific inflammatory markers have been extensively 

studied and reviewed, less attention 
has been given to the T-cell-specific 
immunological responses after 
trauma. Table 1 lists the various T 
cell subsets and their signature 
cytokines in the pathogenesis of 
TBI, including the Th1 cytokines 
IL-2, IL-12, and IFN-γ, the Th2 
cytokines IL-4, IL-5, IL-6, and IL-10, 
and Th17 and Treg cytokines. 
However, many of these cytokines 
are also expressed and released 
from other cellular sources such as 
monocytes, microglia, astroglia and 
neuronal cells [48], which may be 
reviewed in the future study. 

 

 
Figure 1. Possible mechanism and the interactions between brain and systemic immunity response after traumatic 
brain injury (TBI). 
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Table 1. The role and function of T-helper cells and their cytokines in traumatic brain injury 

T cell subsets Cytokines Peripheral level Role Function in TBI 
Th 1 IL-2 diminished Pro-inflammatory Immunosuppression of IL-2-regulated response in TBI patients 
Th 1 INF-γ elevated Pro-inflammatory Interfere with TBI patients’ cognitive functioning  
Th 1 IL-12 elevated/diminished Pro-inflammatory A contributing factor to TBI-induced cognitive impairments in rats  
Th 2 IL-4 elevated Anti-inflammatory Beneficial for TBI animal models and patients  
Th 2 IL-5 elevated Pleiotropic Marking TBI patients more susceptible to undesirable complications  
Th 2 IL-6 elevated Pro-inflammatory Neurotrophic and neuroprotective effects in TBI animal models and patients 
Th 2 & Treg IL-10 elevated Anti-inflammatory Beneficial and detrimental effects in TBI animal models  
Th 17 IL-17 diminished Pro-inflammatory Induce the production and recruitment of pro-inflammatory cytokines after TBI  
Treg TGF-β elevated Anti-inflammatory Improve the neurobehavioral deficits in brain-damaged rats  

 
 

The Th1/Th2 Balance 
The most prominent components of Th cells are 

the Th1 and Th2 subtypes. Th1 cells are potent 
activators of macrophages and mediate delayed-type 
hypersensitivity reactions (also termed cell-mediated 
immunity), whereas Th2 cells promote antibodies 
secreted by B cells and immediate-type hyper-
sensitivity reactions (also termed humoral immunity). 
Cytokines such as IL-2, IL-12, and INF-γ have been 
characterized as the Th1-associated group of 
cytokines, whereas cytokines such as IL-4, IL-5, IL-6, 
and IL-10 have been assigned to the Th2-associated 
group of cytokines [49]. 

TBI is accompanied by a severe shift from a Th1- 
to a Th2-associated response, which may further act as 
yet-to-be identified risk factor for sepsis, systemic 
inflammatory response syndrome, and multiple 
organ failure [50]. Shifts in the Th1/Th2 balance also 
appear in cerebrovascular [51] and neurodegenerative 
diseases [52], accompanied by various complex 
interactions and cell signals, suggesting a profound 
immunological dysfunction. Under normal 
circumstances, Th0 cells proportionally differentiate 
into Th1 and Th2 cells. However, a bias toward the 
Th2 response and Th1 suppression can be induced by 
TBI [53], which could be associated with a poor 
clinical outcome [54]. Tan et al. [47] reported that 
administering probiotics improved recovery in TBI 
patients by adjusting the Th1/Th2 imbalance. The 
balance between Th1 and Th2 cytokines may be 
decisive for the progression of TBI. Our discussion 
will focus on Th1 and Th2 cytokines in peripheral 
blood. 

IL-2 is a pleiotropic cytokine with a complex 
signaling cascade [55, 56]. Among its many actions, 
IL-2 is a potent Th1 cell growth factor, and an 
essential factor for the cellular immune response [29]. 
IL-2 is more broadly involved with Th1 [57], Th2 [58], 
and Th17 [59] cells by regulating the expression of 
corresponding cytokine receptors [60, 61]. Julita et al. 
[62] demonstrated a significant reduction in serum 
IL-2 and its soluble receptor (sIL-2R) in TBI patients 

10–50 days after trauma, suggesting immuno-
suppression of IL-2-regulated responses during the 
post-injury period. He et al. [63] revealed that the 
serum IL-2/sIL-2R level in trauma patients is low. The 
decrease of serum IL-2 level and increase of serum 
sIL-2R level may be involved in the post-traumatic 
complications and survival, suggesting the prognostic 
value [64]. As an aspect of the cascade of 
immunological defects after TBI, this decrease in IL-2 
may be induced by inhibitory monocytes and 
immature lymphocytes [65]. 

In addition to IL-2, IFN-γ, and IL-12 are 
pro-inflammatory cytokines. IFN-γ is expressed 
predominantly by Th1 cells, and is an activator of the 
Th1 immune response and stimulator of IL-12 [66]. 
The expression of IFN-γ in the circulating peripheral 
blood mononuclear cells was thought to decrease in 
trauma patients because of immune defects [54], but 
recent evidence suggests that IFN-γ remains 
persistently high during the acute [67] and chronic 
phase [68] of TBI. IL-12 had been defined as a 
promotor of IFN-γ expression and natural killer cell 
activity [69, 70]. IL-12 signaling, related to the 
development of Th1 [71, 72], is governed by the 
transcription factor signal transducer and activator of 
transcription 4 through the IL-12 receptor [73]. Stahel 
et al. [74] reported that IL-12 was significantly 
elevated 14 days after trauma in TBI patients, whereas 
Schwulst et al. [75] showed that IL-12 expression was 
subsequently diminished in TBI patients 14 days later. 
Evidence also shows that peripheral IFN-γ and IL-12 
levels are significantly associated with poorer 
cognitive recovery. Furthermore, high levels of IFN-γ 
and IL-12 interfere with TBI-induced cognitive 
impairment [68, 76], thus affecting the magnitude of 
the behavioral change [76]. 

IL-4 is an anti-inflammatory Th2 cytokine that 
downregulates the Th1 response. While it has been 
generally accepted that Th1 and Th2 cytokines are 
mutually inhibitory, IL-4 enhances the expression of 
IL-12 [77]. Majetschak et al. [78] reported that 
increased IL-4 levels are more prominent in trauma 
patients with favorable outcomes than that in those 
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with an unexpected recovery. Kipnis et al. [79] 
suggested that IL-4 production is induced by T cells 
after central nervous system (CNS) injury in a 
MyD88-dependent manner and promotes neuronal 
survival and recovery through neurotrophic 
signaling. Although IL-4 levels increase after trauma, 
they may be protective as well as predictive. 
Administering IL-4 may be beneficial for patients with 
TBI by regulating a dysregulated inflammatory 
response [80, 81]. 

IL-5 was initially identified to activate B cells, but 
it exerts pleiotropic functions on various target cells 
via a high-affinity receptor [82]. Trauma patients may 
exhibit early elevations in plasma IL-5 levels, making 
them more susceptible to undesirable complications 
[83, 84]. 

IL-6 and -10 perform pro- and anti-inflammatory 
functions, respectively [85, 86] and are contributing 
factors to the inflammatory response following TBI. In 
a rat TBI model, IL-6 peaked at 6 h after trauma, while 
IL-10 peaked at 24 h [35]. The IL-6 response is more 
related to the type of brain damage than the IL-10 
response [87]. Previous studies have indicated that 
although increasing IL-6 leads to exaggerated brain 
damage, IL-6 plays a neuroprotective role by 
improving post-traumatic healing [88, 89]. Kumar et 
al. [90] reported that elevated IL-6 is associated with 
an increased inflammatory response, thus leading to 
an unfavorable global outcome in TBI patients. 
However, Ley et al. [91] indicated that an IL-6 
deficiency in a TBI animal model was associated with 
poor behavioral performance, suggesting 
neurotrophic and neuroprotective roles for IL-6. A 
plasma IL-6 level with a cut-off of 100 pg/mL has 
been identified to be a predictor for prognosis during 
the acute phase of brain-injured patients [92]. 

Apart from a higher pro-inflammatory burden 
due to IL-6, plasma levels of the anti-inflammatory 
cytokine IL-10 are significantly higher in TBI patients 
[93]. Elevated serum levels of IL-10 imply a poor 
outcome after TBI and are positively correlated with 
injury severity [94, 95]. Thus, serum IL-10 at the early 
phase may have significant prognostic value in TBI 
patients [96]. Administering IL-10 to rat models 
results in increased neuronal survival by suppressing 
several inflammatory events [97]. Intravenous and 
subcutaneous, but not intracerebroventricular, 
administration of IL-10 improves recovery [98]. IL-10 
also plays an important role in the neuroprotection of 
hyperbaric oxygen therapy against TBI in mice [99]. 
Contrary to the results from animal experiments, 
administering IL-10 suppresses the beneficial effects 
in TBI patients [100]. Although IL-10 is consistently 
elevated during the acute phase of TBI, the 
contradictory effects of IL-10 occur as a result of 

different pre-clinical or clinical conditions [101]. 
Kumar et al. [102] reported that an elevated serum 
IL-6/IL-10 ratio was associated with outcome in TBI 
patients. The predictive value of IL-6 and -10 in 
trauma patients remains to be fully elucidated [103]. 

The Th17/T-Regulatory cells balance 
Th17 cells, characterized by the production of 

IL-17A, IL-17F, and IL-22, were identified as a new 
lineage of Th cells in 2005 [104]. IL-17A is also called 
IL-17 because it is secreted in the greatest quantities 
and contributes to most of the Th-17 effects [105]. 
Studies have shown that IL-17 was significantly 
upregulated after TBI, which may be related to the 
pathogenesis of TBI [106]. As IL-17 is induced with 
subsequent pro-inflammatory cytokines, Th17 cells 
have major functions in tissue inflammation. 
However, recent experiments in Rag1- / - mice have 
demonstrated that IL-17 is also produced via a 
RAG-independent cellular source [107]. Treg cells are 
another lineage of Th cells but present a totally 
different picture compared with Th17 [108]. Treg cells 
downregulate the inflammatory response by 
maintaining peripheral immune tolerance [34], and 
preventing autoimmunity and chronic inflammation 
[109]. Treg cells are known to be neuroprotective by 
modulating the function of effector T cells [110] and 
secreting anti-inflammatory molecules such as IL-10 
and TGF-β [111, 112]. Similar to IL-10, TGF-β is an 
anti-inflammatory cytokine that modulates immune- 
inflammatory processes [113, 114].  

The balance between Th17 and Treg cells is 
critical for the health of the host by controlling 
inflammatory and autoimmune disorders [33]. 
Besides sharing a similar development pathway, Th17 
and Treg trans-differentiate into each other under 
some conditions [115]. A Th17/Treg imbalance has 
been reported to be associated with severity of injury 
in trauma patients [116]. Gupta et al. have previously 
showed that the higher the ratio of Th17 cells to Treg, 
the worse the post-traumatic complications [116]. 
Besides, the imbalance of Th17/Treg cells is believed 
to be a key factor in the progression of inflammatory 
response [117, 118]. Therefore, adjusting Th17/Treg 
balance may be an effective way to manage the 
secondary damage of TBI. Propofol, an intravenous 
anesthetic drug, maintained Th17/Treg balance and 
reduced inflammation when injected into the TBI 
models [119]. Emerging findings suggest that the level 
of circulating Treg cells is positively correlated with 
neurological recovery in animal models [120] and TBI 
patients [121]. Kipnis et al. [122, 123] reported that 
transferring exogenous Treg cells into an immune- 
deficient animal host following CNS injury leads to 
neuroprotection. Increasing the number of Treg cells 
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and their signature cytokines IL-10 and TGF-β by 
inhibiting mTOR signaling improves the neuro-
behavioral performance in brain-injured rats [124].  

Conclusions 
Secondary brain injury after trauma is a complex 

process involving central and peripheral immune 
responses [4]. Immune-inflammatory processes play a 
vital part in the pathophysiology of TBI. BBB 
dysfunction allows the passage of immune cells and 
inflammatory molecules that trigger a systemic 
inflammatory response [125]. Immune-inflammatory 
processes play a vital part in the pathophysiology of 
TBI. Recent evidences have established the role of Th 
cells and their derived cytokines in TBI. Cytokines 
play a dual role in TBI depending on different time 
courses and concentrations. A more comprehensive 
understanding of the cytokines in TBI is needed to 
develop diagnostic and therapeutic products. 
Modulating the immunological balance between 
Th1/Th2, Th17, and Treg cells may also represent a 
promising therapeutic strategy. Additional 
investigations are needed to elucidate the basic 
pathological mechanism of Th cells and their 
cytokines in the pathogenesis of TBI, and to open up 
new possible avenues for treating secondary brain 
injury. 
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