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Abstract 

Interleukin-17 (IL-17) is known as a Th17-cell-derived proinflammatory cytokine, which plays a pivotal 
role in several inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE), 
rheumatoid arthritis, and psoriasis. Emerging evidence has shown that IL-17 is linked to endometriosis, 
although the etiology of endometriosis is still unknown. The IL-17 expression is up-regulated in serum, 
peritoneal fluid (PF) and endometriotic lesions from patients with endometriosis but the related 
regulation mechanisms are complex and obscure. Meanwhile, the specific roles of IL-17 in endometriosis 
are also worthy of further exploration. Through the integration and summary of literature, we conclude 
that the secretion of IL-17 increases under the regulation of ectopic microenvironment and other factors, 
and then IL-17 is deeply involved in endometriosis in the regulation of immune microenvironment, the 
invasion and growth of ectopic lesions, and so on, which implies its therapeutic value in this disorder. 
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Introduction 
The IL-17 is secreted by the CD4+ T helper 17 

(Th17) cells and regarded as the signature cytokine of 
a distinct cluster of these cells, which was discovered 
in 1999 using T-cell clones from the joints of patients 
with rheumatoid arthritis [1-4]. The development of 
Th17 cells is distinct from the development of Th1, 
Th2 and regulatory T cells and requires specific 
transcription factors and cytokine requirements, such 
as transforming growth factor-β (TGF-β), combined 
with IL-6 or IL-21 and the transcription factor, 
retineic-acid-receptor-related orphan receptor gamma 
(RORγt). As for their particular expression of the 
“master” transcription factor RORγt, it is then 
activated by the IL-12 family cytokine IL-23, and the 
resulting “IL-23-IL-17 axis” was found to function as a 
critical driver of autoimmune disease [5, 6, 4, 7-16]. To 
date, the IL-17 family of cytokines contains 6 
structurally related cytokines (IL-17A, IL-17B, IL-17C, 
IL-17D, IL-17E and IL-17F) that share sequence 
homology, and their 5 corresponding receptors 
(IL-17RA, IL-17RB, IL-17RC, IL-17RD and IL-17RE) 
present on the surface of cells. These IL-17 receptors 

subunits adopt a shared cytoplasmic motif termed a 
‘‘SEFIR’’ (SEF/ IL-17 receptor), which is analogous to 
the toll-IL-1 receptor (TIR) domain expressed in 
toll-like receptor (TLR) and IL-1 receptor family 
members [10, 17-19]. IL-17A is the first described 
member of this family and also the best characterized 
one. It was once believed to be primarily produced by 
Th17 cells [20, 21, 19]. In fact, IL-17A and IL-17F 
exhibit high sequence similarity and can form 
homodimers and heterodimers to signal, and they 
also signal through the same receptor complex, so 
they largely share biological functions, with IL-17A 
being more potent than IL-17F. While the other 
four IL-17 isoforms only exist as homodimers [3, 22, 
18, 23]. 

Since IL-17 is reported to be conserved in 
evolution [24-28], its host-protective attributes can 
play diverse roles both in immune-protection and also 
immunopathology. As for immune-protective 
functions, IL-17 exerts its function as a key mediator 
of mucosal surveillance and barrier integrity through 
maintaining epithelial integrity, promoting the 
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production of antimicrobial factors and regulating the 
recruitment and generation of neutrophils [29-35, 22, 
36, 37]. However, IL-17 also has been increasingly 
implicated as a driver of immunopathology in 
settings of autoimmunity, cancer and chronic 
inflammation [38-41]. Take IL-17A as an example, it 
has been recognized in its critical role in the 
promotion of disease progression, pathogenesis of 
autoimmune diseases, tumors, mechanical injury, 
infection, obesity and chronic inflammatory disorders 
[20, 10, 42, 18, 43, 19]. 

Endometriosis is a common estrogen-dependent 
inflammatory gynecological disease and is defined as 
the presence of functional endometrial glands and 
stroma outside the uterine cavity.[44-46] This disorder 
is similar to malignancies in some ways: progressive 
and invasive growth, a tendency to metastasize and 
recurrence. Although the physiopathology of 
endometriosis is not completely understood and 
several theories have been proposed to explain it, it is 
well established that this pathogenesis is closely 
related to the immune system. The defective immune 
responses may include increased levels of activated 
peritoneal macrophages and various 
proinflammatory cytokines, abnormal T- and 
B-lymphocyte activation, reduced natural killer cell 
activity, and the production of various autoantibodies 
[47, 48, 44, 49-56]. All these activities not only fail to 
effectively clear discarded endometrial tissues but 
may actually allow development of chronic 
inflammation and even a hyperinflammatory state, 
which can help endometrial cells to escape immuno-
surveillance and also use inflammatory mechanisms 
to promote their growth within the peritoneal cavity. 
The amount of misplaced endometrial tissues will in 
turn overwhelm the resident and recruited immune 
cells, leading to dysfunctional in their ability [57, 50]. 
And as is reported in many previous studies, the IL-17 
family plays a pivotal role in the pathogenesis of 
endometriosis [58, 49, 59-61]. 

In this review, we attempt to outline the roles of 
IL-17 in endometriosis, present the regulatory 
mechanism of IL-17 expression in endometriosis, 
identify the biological function (regulation of ectopic 
endometrial lesions, recruitment and function 
regulation of immune cells, and angiogenesis) of IL-17 
in endometriosis, and discuss prospects in the 
potential treatment of these patients as well. 

Expression of IL-17 and its receptors 
With the deepening of the research on cytokines 

and endometriosis, elevated levels of IL-17 in 
endometriosis have been reported and confirmed 
more widely, especially in the early stages of the 
disease [62-64, 42, 60, 61]. Further investigations have 

documented that IL-17 is produced not only by 
Th17/ThIL-17 cells, but also by activated CD8+ T 
cells, γδ T cells, NK cells, neutrophils as well as mast 
cells [65-72]. For the first time, Zhang and his 
colleagues demonstrated higher IL-17 levels in the PF 
of patients with endometriosis. Meanwhile, there was 
a correlation between the concentration of IL-17 in PF 
and progression of the disease, and the concentrations 
of IL-17 in PF were significantly higher in the patients 
with minimal/mild endometriosis than those with 
moderate/severe endometriosis and those without 
endometriosis. This study also suggested the 
concentration of IL-17 in PF was associated with 
endometriosis-related infertility [61]. In line with 
Zhang’s study, increased amounts of IL-17 was later 
demonstrated in the PF of women with endometriosis 
by some other teams [62, 63, 73, 74, 42, 60]. Bungum et 
al. also found high expression of IL-17E in PF, but 
unlike Zhang’s team, they did not find an association 
between IL-25 (also called IL-17E) levels and the stage 
of endometriosis [62]. They speculated that this result 
could be due to the fact that the inflammatory 
response seems to be low at more severe stages of 
endometriosis, just as Salmeri et al. suggested [75]. 
Besides, some other reports even demonstrated that in 
the context of endometriosis, IL-17A was elevated in 
the plasma [76] and PF of women with endometriosis 
compared to controls and that endometriotic lesions 
produce IL-17A [42, 60]. Sabbaghi et al. declared that a 
similar elevation in IL-17A level was observed both in 
blood serum and follicular fluid (FF) when 
endometriosis and infertility co-exist [77]. In Ahn’s 
research, though they did not find a significant 
difference in the PF concentration of IL-17A between 
women with endometriosis and without disease, they 
found it in the plasma samples. Additionally, in their 
study, immunohistochemistry revealed the 
localization of IL-17A–positive cells in the stroma and 
surrounding the vasculature in matched eutopic 
endometrium and ectopic lesion samples from 
women with endometriosis. Thereout, they suspected 
it was possible that IL-17A was primarily generated 
by tissue-resident immune cells and as such may not 
be detectable in the PF [78]. 

In addition, Hirata et al. successively reported 
that endometriotic stromal cells (ESCs) expressed 
IL-17RA [64] and IL-17RC [79]. In 2008, this group 
first examined presence of IL-17A-positive cells in 
endometriotic tissues and Th17 cells in peritoneal 
fluid mononuclear cells (PFMCs) [64]. Then they also 
demonstrated expression of IL-17F in mononuclear 
cells from endometriotic lesions (EMMCs) [79]. 

A recent study, performed by Gogacz et al., 
described the increased percentage of Th17 cells in the 
PF in comparison with peripheral blood (PB) in 
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endometriotic patients. And their data also showed 
that the percentage of Th17 cells in PF corresponded 
with the severity of endometriosis. In severe 
endometriosis, the percentage of Th17 cells in PF was 
higher than with early (I/II stage) endometriosis [80]. 
This correlation was also demonstrated by other 
researchers [81]. Liu et al. further showed that the 
percentage of IL-17 and Th17 cells were both 
increased in peritoneal fluid mononuclear cells 
(PFMCs) of patients with endometriosis [82]. It is also 
newly demonstrated the abundance of CD8+ T cells 
and CD56+ NK cells with enriched IL-17 signalling 
pathway in the eutopic endometria of women with 
endometriosis [83]. 

However, there are several papers reporting that 
they did not find any relationship between the level of 
IL-17 and endometriosis [84, 85]. But some of them 
still found IL-17/IL-10 and IL-17/IL-23 ratios were 
respectively increased in PF and serum samples from 
endometriosis group. And the increased IL-17/IL-23 
ratio was also found in the periphery of endometriosis 
women, which was explained because IL-17 was 
antagonized by anti-inflammatory cytokines such as 
TGF-β1 in the latter stages of the disease (Table 1) 
[85]. 

 

Table 1. Recent publications about IL-17, IL-17R or Th17 cells in 
patients with endometriosis and their correlation 

Parameter Distribution Correlation  Reference 
IL-17 PF↑ Negative 

correlation 
60 

IL-17 PF↑ No mention 63, 73, 74 
IL-25 PF↑ No correlation 64 
IL-17A Plasma↑, PF↑ No mention 43, 61 
IL-17 Serum↑ No mention 76 
IL-17A Serum↑, FF↑ No mention 77 
IL-17A Plasma↑, PF no difference No mention 78 
IL-17A–positive cells Stroma and surrounding 

the vasculature in 
matched eutopic 
endometrium and ectopic 
lesion samples↑ 

No mention 78 

IL-17 No difference No correlation 84 
IL-17 No difference No correlation 85 
IL-17/IL-10 ratio PF↑, serum↑ No mention 85 
IL-17/IL-23 ratio PF↑, serum↑, periphery↑ No mention 85 
IL-17F EMMCs↑ No mention 79 
IL-17RA ESCs↑ No mention 62 
IL-17RC ESCs↑ No mention 79 
IL-17A-positive cells  Endometriotic tissues↑ No mention 62 
TH17 cells PFMCs↑ No mention 62 
TH17 cells PF↑ Positive 

correlation 
80, 81 

IL-17 + TH17 cells PFMCs↑ No mention 82 
CD8+ T cells, 
CD56+ NK cells, IL-17 
signalling pathway 

Eutopic endometria↑ No mention 83 

Note: Abbreviations: IL-17, interleukin 17; IL-17R, interleukin 17 receptor; Th17 
cells, T helper 17 cells; PF, peritoneal fluid; FF, follicular fluid; EMMCs, 
mononuclear cells from endometriotic lesions; ESCs, endometriotic stromal cells; 
PFMCs, peritoneal fluid mononuclear cells. 

 
 

By considering the above-mentioned facts, it is 
prevalent that the level of IL-17 rises in endometriosis 
patients, commonly detected in PF and blood. Due to 
the effects of anti-inflammatory factors and other 
unknown factors, this concentration is not necessarily 
proportional to the progression of the disease. It is 
possible that continuous dynamic detection of 
concentration changes will provide more valuable 
hints, which require further large sample studies. 
Besides, in view of the differences in sample size, 
measurement methods and sampling among different 
studies (sampling at different times of the menstrual 
cycle, measure differences in samples such as tissues 
or cells and etc.), there must be inevitable differences 
in different research results. 

Regulatory mechanisms of IL-17 
expression in endometriosis 
Estrogen 

Deena Khan’s team found that estrogen not only 
enhanced the levels of IL-17 and intracellular IL-17+ 
cells but also upregulated the IL-17-specific 
transcription factor, RORγt, in activated splenocytes 
in wide type mice. They also suggested estrogen 
upregulates IL-17 induction in autoimmune mice [86]. 
Similarly, Newcomb et al. provided evidence that 
17β-estradiol (E2) and progesterone (P4) increased 
IL-17A production from Th17 cells, by decreasing 
let-7f miRNA expression and increasing IL-23R 
expression [87]. While other in vitro studies reported 
the production of IL-17 was under the negative 
regulation of E2. These variable findings might be due 
to different T-cell activation and differentiation 
protocols [88-93]. Taken together, these findings 
confirmed that estrogen is involved in the expression 
of IL-17, although there is no direct evidence that the 
site of action is endometriosis. Furthermore, Ning’s 
findings showed IL-17A participated in CD68+CD163+ 
macrophage-stimulated endometrial cancer cell 
proliferation by regulating the estrogen receptor 
alpha (Erα) pathway [94]. According to the above 
analysis, we suppose that estrogen may well be 
involved in the expression of IL-17 in the 
microenvironment of endometriosis and prefer it to be 
a positive moderator, which still warrants further 
investigation. 

Cytokine 
It is extensively acknowledged that some 

cytokines also participate in the production of IL-17 in 
endometriosis. Bungum et al. proposed that the 
pathophysiology could involve macrophages 
producing IL-1β and tumor necrosis factor-α (TNF-α), 
found in PF from women with endometriosis [95], 
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which stimulates production of Regulated on 
Activation, Normal T cell Expressed and Secreted 
(RANTES) and Monocyte Chemotactic Protein-1 
(MCP-1) [96, 97]. RANTES and MCP-1 may be 
responsible for recruiting macrophages, producing 
Histamine Releasing Factor (HRF), into endometriotic 
implants. In turn HRF might induce production and 
release of IL-4 and maybe IL-25 from mast cells [62]. 
Current evidence largely suggests that IL-23 is 
responsible for the differentiation and expansion of 
Th17/ThIL-17 cells, and so it is viewed as an 
important IL-17 inducer to regulate the expression of 
IL-17 [98, 99, 35, 100]. Additionally, Chang’s group 
concluded that under the stimulation of IL-6 and 
TGF-β, signal transducer and activator of 
transcription 3 (STAT3) may be activated in naive T 
cells, which further promotes RAR-related orphan 
receptor C (RORC) and IL-17A transcription, and 
induces IL-17A production. And IL-27 was 
considered to induce the IL-10 and IL-17A 
double-producing Th17 cells in endometriosis. In 
advanced endometriosis, the formation of a c-Maf, 
RORγt and Blimp-1 complex triggered by IL-27 
contributes to the expansion of IL-10-producing Th17 
cells. Hence IL-27 is regarded as a pivotal regulator in 
endometriotic immune tolerance by triggering Th17 
cells to produce IL-10 and IL-17A and promoting the 
rapid growth and implantation of ectopic lesions 
[101]. TGF-β1, a kind of anti-inflammatory cytokines 
with a myriad of functions including cell 
differentiation, proliferation, migration, angiogenesis 
and vasorelaxation [102, 103], is found to support both 
Th17 and Treg cells differentiation in a dose 
dependent manner. And in higher concentrations, the 
immune response will shift toward Treg cells [104]. 
Therefore, Tarokh et al. assumed that higher 
concentrations of TGF-β1 might regulate the 
inflammation in the patients via reducing IL-17 
concentration in the later stage of endometriosis [85]. 
In a recent study, the researchers found that treatment 
with anti-bone morphogenetic protein 1 (anti-BMP1) 
antibodies dose-dependently increased lesion volume 
in mice with endometriosis, reduced IL-17 and IL-1β 
levels [105]. This may suggest that BMP1 is involved 
in the regulation of IL-17 expression although further 
study is needed to confirm it. Given all this, the role of 
cytokines, in the regulation of IL-17 expression in 
endometriosis is beyond doubt. However, further 
studies are still needed to determine whether the 
specific regulatory mechanisms are intersected or the 
effects of various cytokines are independent. 
Inhibition of positive factors and promotion of 
negative factors may help to reduce the concentration 
of IL-17, thus providing new ideas for the treatment of 
endometriosis. 

LnRNA and microRNA 
Gene-level studies on the regulation of IL-17 

expression in endometriosis are also under way. Zhi 
et al. proved that lack of immediate early response 
gene (IER3, also called IEX-1), belonging to the group 
of genes rapidly activated during inflammation, 
promoted Th17 differentiation and then increased 
IL-17A production [106]. And IER3, predicted by 
bioinformatics software, is one of the target genes of 
miR-342-3p which has been found to be highly 
expressed in serum of woman with EMS [107]. 
Besides, LncRNA H19 was also successively detected 
in women with EMS and found lower expression in 
the eutopic endometrium of women with EMS with 
its mechanism in reducing the proliferation of ESCs 
[108, 109]. Recently, Liu et al. first confirmed 
miR-342-3p could negatively regulate IER3 
expression. And they also demonstrated that LncRNA 
H19 over-expression could decrease IL-17 secretion, 
suppress Th17 differentiation and ESCs proliferation 
through inhibiting miR-342-3p [82]. It is plausible that 
given the limited exposure reported to date, 
miR-342-3p has a positive promoting effect on IL-17, 
while LncRNA H19 plays a detrimental role. 

Hypoxia 
Retrograde menstruation has been proposed and 

well accepted to be a crucial constituent for the 
development of the etiology of endometriosis. 
According to this theory, shed-off endometrial tissues 
first lost blood supply and may well face hypoxic 
stress. Consequently, the ectopic lesion in 
endometriosis is indeed an anoxic environment. 
Hypoxia-inducible transcription factor-1 (HIF-1), the 
oxygen-sensitive transcription factor, is key 
transcriptional regulator of hypoxia-associated genes 
to adapt to decreased availability of O2 [110]. Dang et 
al. once observed a higher proportion of IL-17A+ cells 
in hypoxic compared to normoxic culture conditions. 
And their results demonstrated that HIF-1 plays a 
dual role in regulating IL-17A transcriptional activity 
by directly activating RORγt transcription and then 
collaborating with RORγt at the IL-17A promoter to 
recruit p300, thus generating a permissive chromatin 
structure. Meanwhile, Th17 differentiation is 
enhanced under hypoxia in a HIF-1α-dependent 
manner. Therefore, HIF-1α activity is suggested to 
represent a major mechanism by which the hypoxic 
conditions associated with inflammation can promote 
Th17 differentiation [111]. It is also proved that 
hypoxia and HIF-1α overexpression in in rheumatoid 
arthritis potentiated RASF-mediated expansion of 
inflammatory Th1 and Th17 cells, leading to 
proinflammatory interferon-γ (IFN-γ) and IL-17 
production [112]. In addition, it has been found that 
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the abundance of HIF isoforms was mechanistically 
linked to elevated IL-1β and IL-17 in sarcoidosis [113]. 
Taken together, IL-17 is regulated by HIF-1 and 
hypoxia. However, it is a pity that there may be scarce 
direct evidence that hypoxia or HIF-1 regulates IL-17 
expression in endometriosis up to date. Further 
research is needed on whether the same regulatory 
mechanism exists in endometriosis. 

The biological functions of IL-17 in 
endometriosis 
Regulation of ectopic endometrial lesions 

Based on an analysis of the literature, we suspect 
that the regulation of IL-17 on ectopic endometrial is 
mainly likely to trigger its invasion, implantation, 
growth and proliferation during the early stage of 
disease, that is IL-17 might be more important in the 
initiation, but not in the later process of endometriosis 
[64, 114, 85]. Ahn et al. reported that IL-17A mainly 
promoted proliferation and invasion, and restricted 
the adhesion of ESCs, thereby accelerating the 
growth, implantation and dissemination of an ectopic 
lesion in vitro and in vivo [78], which is also verified by 
Chang’s team [101]. IL-17A stimulated propagation of 
ESCs may be partially attributable to its mitogenic 
effect and the increased production of IL-8 induced by 
IL-17A [64], since IL-8 has been shown to facilitate the 
proliferation of endometrial stromal cells [115]. And 
another member of the IL-17 family, IL-17F, had a 
similar function in stimulating the secretion of IL-8 
and the expression of COX2 in ESCs and it is 
speculated IL-17F may promote endometriosis 
through these mechanisms [79]. 

In addition, IL-17 has also been found to enhance 
both the production and secretion of IL-1β by 
peritoneal macrophages [116]. It has been reported 
that IL-1β induces the production of IL-8 and vascular 
endothelial growth factor (VEGF) [117]. Therefore, 
elevated concentrations of IL-17 in patients with 
endometriosis may imply an increased 
hypervascularisation, leading to possible facilitation 
of the implantation, proliferation and establishment of 
early endometriotic lesions [61]. 

Furthermore, according to Khan’s finding, 
endometriosis is relevant to Treg- and Th17-cell 
alteration causing survival and implantation of 
ectopic endometrial lesions in the initial stage of the 
disorder, with consequent progression toward the 
advanced stage [73]. 

Recruitment and function regulation of 
immune cells 

Hirata et al. have shown that one of the 
pathogeneses of endometriosis by which IL-17A is 

involved in is the secretion of IL-8 [64, 114, 79]. While 
pleiotropic functions of IL-8, such as chemoattraction 
and activation of neutrophils, are clear and suggested 
to promote endometriosis [118-120]. Additionally, 
IL-17 can enhance granulopoiesis by stimulation of 
granulocyte colony-stimulating factor (G-CSF) and 
granulocyte macrophage colony-stimulating factor 
(GM-CSF) [121]. Takamura et al. suggested that 
IL-17A produced by neutrophils stimulates growth- 
related oncogene-α (Gro-α) secretion from EoSCs, 
thereby recruiting more neutrophils and inducing 
perpetuating inflammation in endometriosis [122]. 
Gro-α is known as a powerful activator of neutrophils 
in its ability to induce chemotaxis, a rise in 
intracellular free calcium, exocytosis, and the 
respiratory burst in neutrophils [123, 124, 120]. While 
neutrophils are suggested to secrete VEGF under 
inflammatory milieu, trigger angiogenesis in the early 
stage of endometriosis, generate reactive oxygen 
species (ROS) at endometriotic sites and impose 
oxidative stress that affects the development of 
endometriosis [125, 126]. 

Furthermore, macrophages are also thought to 
be a pivotal player in promoting endometriosis [54]. It 
is reported that IL-17A is chemotactic for 
macrophages via its receptor, IL-17RA, and can also 
induce M2 polarization in lung cancer [127], which is 
also demonstrated in endometriosis. These 
researchers propose IL-17A is involved in 
macrophage recruitment and may be indirectly 
polarizing SPM into a pathogenic M2 phenotype by 
first interacting with the endometriotic lesion [42]. 
Indeed, M2 macrophages have been proved to 
mediate processes such as extracellular matrix (ECM) 
reconstruction and vascularization, which are 
associated with the progression of endometriosis 
[128-130]. And increased production of TNF caused 
by the activated macrophages and biological effect of 
IL-17 on endometrial cells accelerates the occurrence 
of endometriotic lesions accompanied by infertility 
and unexplained pelvic pain. Besides, IL-17 has been 
shown to induce the production of nitric oxide 
synthase 2 (NOS2) and nitric oxide (NO) by peritoneal 
macrophages [131]. Recent work suggested that 
increased levels of IL-17 in PF from the endometriosis 
patients with infertility may induce the production of 
NOS2 and NO by peritoneal macrophages, which 
adversely affect female reproductive system, sperm, 
embryos, implantation and oviductal function. These 
abnormalities likely all impact fertility, leading to the 
infertility or subfertility observed in the patients with 
endometriosis [61], just like the toxic effects of those 
increased concentrations of Th1 cytokines such as 
TNF-α, IL-1β, IL-4, IL-6, IL-12, and IFN-γ in women 
with endometriosis [132-139]. It is also showed that 
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IL-17 should be inhibited by the emergence of 
decidual stromal cells and placentation, which 
enables the evolution of embryo implantation and 
ongoing pregnancy [140]. Herein, it can be inferred 
that the elevated IL-17 level is related to poor 
reproductive outcome not only in chronic 
endometritis [141] but also in endometriosis. 

Overall, IL-17 could be the stimuli that mediates 
the recruitment and activation of immune cells such 
as macrophages and neutrophils to facilitate the 
immune escape of ectopic endometrial cells, promote 
the progress of endometriosis, and contribute to the 
unexplained infertility. 

Angiogenesis and vasculogenesis 
The survival of endometriotic implants on the 

peritoneal membrane within the peritoneal cavity 
relies on the establishment of blood supply for the 
provision of oxygen and nutrients to the developing 
lesions. And endometriotic lesions are densely 
vascularized. All these fuel the notion that 
mechanisms of angiogenesis and/or vasculogenesis 
may be utilized by endometriosis to establish its own 
vascular network to sustain its survival [142]. 
Angiogenesis refers to a complex process of new 
blood vessel formation from previously existing 
vessels with endothelial cell proliferation [143, 144]. 
While vasculogenesis refers to a process of de novo 
formation of blood vessels arising from migration, 
proliferation, and incorporation of angioblasts or 
endothelial progenitor cells (EPCs) from the bone 
marrow [145]. 

Numasaki et al. reported that IL-17 promotes 
angiogenesis via inducing elaboration of a variety of 
proangiogenic factors that lead to the imbalance 
between angiogenesis activators and inhibitors 
present within the vascular microenvironment and 
triggers vasculogenesis via stimulation of vascular 
endothelial cell migration and cord formation. IL-17, 
on the other hand, stimulates production of 
proangiogenic factors in fibroblasts and promotes 
fibroblast-induced neovessel formation in 
inflammation [146]. Another study suggests that 
IL-17A has the potential to enhance vascularization of 
the lesion through VEGF-and IL-8–mediated 
pathways. Their data also prove a potential 
involvement of IL-17A in mediating neoangiogenesis 
and recruitment of lymphocytes and bone marrow–
derived cells to the site of lesion development [78]. 
Moreover, as mentioned above, IL-17 has the capacity 
to activate macrophages and neutrophils. Then the 
secretory products such as TNF-α, IL-8, and VEGF 
secreted by activated macrophages have the ability to 

influence each phase of the angiogenic process, 
including modifying the local extracellular matrix, 
induction of endothelial cells to migrate or proliferate, 
and inhibition of vascular growth with formation of 
differentiated capillaries [147], thus facilitating the 
proliferation of endometrial cells and subsequently 
progressing to severe endometriosis. And neutrophils 
have been shown to release VEGF under 
inflammatory milieu and promote angiogenesis and 
the maturation of endometrial blood vessels in the 
early stage of endometriosis [126]. Taken together, it is 
probable that IL-17 regulates ectopic lesions to create 
new blood vessels through both angiogenesis and 
vasculogenesis, so cutting off IL-17 might have a 
significant effect on blood supply of endometriotic 
lesions (Figure 1). 

Conclusions and perspectives 
In conclusion, under the regulation of estrogen 

and ectopic microenvironment, such as hypoxia and 
cytokines, the secretion of IL-17 increases, which may 
be derived from endometrial stromal cells or from the 
production of Th17 differentiation. Then IL-17 further 
leads to the proliferation, growth and invasion of 
ectopic foci, promotes the immune escape of ectopic 
foci and the progression of endometriosis by 
recruiting and inducing M2 macrophage 
differentiation. In addition, IL-17 may well be 
involved in endometriosis-related infertility by 
motivating the secretion of activated macrophages, 
accentuating inflammation, influencing the stability of 
fetal–maternal interface and poisoning all stages of 
pregnancy. So as for the treatment, IL-17 may be 
placed as a candidate target molecule for novel 
treatment strategies of endometriosis, especially when 
endometriosis coexists with infertility. A moderate 
reduction in estrogen levels, inhibition of IL-17 
inducer such as IL-23, IL-27, miR-342-3p and HIF-1, 
promotion of negative factors such as TGF-β1 and 
LncRNA H19, all are worth trying to block the source 
of IL-17 to intervene in this disease. Similarly, 
intercepting the downstream pathway of IL-17 may 
also affect the progression of endometriosis through 
decreasing IL-8 and Gro-α concentrations, 
normalizing the number of macrophages and 
neutrophils, and so on. Moreover, it is reported that 
the concentration of IL-17 is related to the degree of 
disease, which may be of certain value in evaluating 
therapeutic effect by the way of continuous 
monitoring of IL-17 level. However, the value of 
intervening IL-17A in the treatment of endometriosis 
is still to be studied. 
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Figure 1. The role of IL-17 in endometriosis. Increased IL-17 in PF, serum, endometriotic lesions and etc. leads to the proliferation, invasion and implantation of ectopic 
endometrium partly by recruiting and activating neutrophil and M2 macrophage. And the macrophage secretes NOS2 and NO, giving rise to co-existence of endometriosis and 
infertility. IL-17 also acts directly on its own and indirectly through IL-8. The promotion of vasculogenesis and angiogenesis is another important role of IL-17, which can act 
through a variety of pathways, such as stimulation of vascular endothelial cell migration and cord formation, recruitment of lymphocytes and bone marrow–derived cells and 
inducing elaboration of a variety of proangiogenic factors (e.g., VEGF, IL-1β, TNF-α, and IL-8). Abbreviations: PF, peritoneal fluid; IL, interleukin; G-CSF, colony-stimulating factor; 
GM-CSF, granulocyte macrophage colony-stimulating factor; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; NOS2, nitric oxide synthase 2; NO, nitric 
oxide; Gro-α, growth-related oncogene-α; TNF-α, tumor necrosis factor-α; ESC, endometriotic stromal cell. 
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