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Abstract 

Low back pain (LBP) is a chronic condition that causes great individual suffering and economic burden. The 
major contributor of LBP is intervertebral disc degeneration (IDD), which is caused by a spectrum of 
homeostasis alteration, including the apoptosis of nucleus pulposus (NP) and annulus fibrosus (AF) cells, 
degradation of extracellular matrix (ECM), calcification of cartilaginous endplates (CEP) and so on. Currently, 
the therapeutic strategy for IDD includes conservative and surgery treatment. Nevertheless, none of them 
could reverse the progressive destruction of the intervertebral disc. Hence, it is pivotal to pursue a new 
therapeutic approach. Exosomes, nano-sized substances with diameters of 30-150 nm, can be synthesized and 
secreted by various types of cells. They play an important role in intercellular communication. Increasing 
evidence implicates that exosomes could impact the intracellular transcription activities, thereby inhibiting or 
accelerating the proliferation and apoptosis of cells. Thus, it is a new therapeutic source for IDD. This review 
chiefly focuses on generalizing and clarifying the roles of exosomes in the onset and deterioration of IDD, and 
their therapeutic potential. 

Key words: exosome; intervertebral disc; low back pain; stem cells; intervertebral disc degeneration 

Introduction 
Low back pain (LBP) is a very common symptom 

which not only leads to individual suffering, but 
social and economic burden [1]. The direct economic 
expenditure of LBP and health care is estimated to be 
around $87 billion in the US a year [2]. In Korean, LBP 
is the second disease in socioeconomic burden and 
expenditure for management [3]. The highest 
incidence of LBP happens to the people over 44 years 
old [2]. With the average life expectancy longer than 
ever, it is urgent to discover the safest and most 
efficacious treatment for LBP. 

The etiology of LBP is multifactorial, and the 
major contributor is considered to be intervertebral 
disc degeneration (IDD) [4-8]. The risk factors of IDD 
mainly include age [9], genetic predisposition [10-12], 
mechanical damage [13], high body mass index, 
obesity [14] and so on [15]. Current therapeutic 
strategies for IDD contain conservative and surgical 
options, but the outcomes are not invariable pleased 

[16]. Besides, patients might not rehabilitate after 
surgery. Therefore, it is urgent to find a new 
therapeutic means which could reverse the 
degeneration of intervertebral disc (IVD) and free the 
patients from soreness. 

Exosome was first visualized and named in the 
1980s, which was considered to be the dumpster of 
cell and a way to dispose of unwanted molecules 
[17-20]. However, recent studies gradually find that 
the function of exosome is far more than just 
delivering unwanted molecules [21, 22]. It, as a tiny 
membrane vesicle which carries miRNA, mRNA and 
protein, is the mediator of intercellular communica-
tion and plays a pivotal role in the onset and 
deterioration of IDD [23, 24]. This review tries to 
summarize the observations about various cells- 
derived exosome and their function in the outset and 
development of IDD. In addition, we also discussed 
the exosome-based biological therapy of IDD. 
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Intervertebral Disc Degeneration 
Structure of IVD 

IVD, derived as the tissue that bears load of 
spine, constitute one-third of the height of spine [25, 
26]. As the largest avascular structure of the body, 
IVD is composed of nucleus pulposus (NP), annulus 
fibrosus (AF) and cartilaginous endplates (CEP) [27]. 
NP, a high-pressured and hydrophilic structure, is 
composed of water, cell and extracellular matrix 
(ECM). The ratio of water in NP is around 70-90%, 
which indicates that NP is the highest water content 
part of IVD [28]; chondrocyte-like cells and 
notochordal cells are the main part of NP cells (NPc), 
which could secrete cartilage-like ECM components; 
ECM, made up of collagen, elastin, proteoglycans, 
and glycoproteins, participates in the metabolism and 
mechanical function of NP. AF, a ring-shaped disc of 
fibrosus connective tissue, is the fundamental 
load-bearing complex of IVD. It is composed of outer 
and inner annulus. The outer annulus principally 
comprises fibroblasts and the collagenated lamella; 
the inner annulus mainly consists of chondrocyte-like 
cells. CEP, a cartilaginous structure, forms the 
interface between adjacent vertebral segments [29, 30]. 
Due to the avascular feature of IVD, the essential 
nutrients and oxygen all supplied via the 
concentration gradients exchange in CEP. 

In IVD, the volume of cells is only 1%, with the 
average cells density is nearly 6000/mm3. NP cells 
density is 5-103/mm3, AF cells density is 9-103/mm3 
[31, 32]. The rare density of IVD cells signifies that 
when the IVD is impaired, the restoration rate is slow. 

Pathogenesis of IDD 
A spectrum of pathogenic factors and 

intercellular effects participate in the IDD progression 
[33]. For instance: superfluous mechanical stress; 
excessive oxidative stress; adverse inflammatory 
cytokines [34-40]. Besides, diabesity and high body 
mass index which might change the micro- 
vasculature of CEP and adjacent vertebral body also 
influence the nutrient supply into IVD, thus 
accelerating the development of IDD [39-41]. 

The metabolic dysregulation of NPc leads to the 
suppression of synthesis of ECM; the lamellae in the 
AF become irregular; and the calcification of the tiny 
pores within CEP decreases the supply of nutrition 
and oxygen [42-45]. All of which further aggravate the 
degeneration of IVD, unbalance the homeostasis of 
IVD, thus inducing the senescence and apoptosis of 
NPc and strengthening the permeation of 
inflammatory cytokines [46-50]. Significantly, AF cells 
are sensitive to mechanical pressure. The alteration of 
ECM composition and senescence of NPc leading to 

exceeding load onto AF, thus inducing the apoptosis 
of AF cells and rupture of AF [51, 52]. In addition, 
vascellums and nerves grow into IVD, causing pain 
[53-57]. Taken together, these multifactorial changes 
eventually cause the collapse of IVD structure. 

Current Therapy of IDD 
Currently, the therapeutic strategy for IDD 

mainly includes conservative and operative options 
[16]. The conservative therapeutic strategy includes 
non-pharmacological and pharmacological therapy. 
The operative therapeutic strategy includes 
discectomy with/without fusion and total disc 
replacement (TDR) [58, 59]. However, in conservative 
therapeutic strategy, the effect of non-pharmaco-
logical therapy is ambiguous; pharmacological 
therapy might cause drug addiction. In operative 
therapeutic strategy, complications after discectomy 
surgery might inevitable; the area of application of 
TDR is harsh [60]. 

The conservative and operative therapeutic 
strategies mainly aimed at relieving symptoms rather 
than reversing pathogenic progression of IDD. 
Therefore, it is essential to explore a novel therapeutic 
strategy which could delay and/or reverse the 
pathogenic process of IDD. Significantly, the stem 
cells and stem cell-derived exosome (SC-exo) based 
therapy is a newly developing non-invasive 
therapeutic approach. It has potent ability to suppress 
the IDD progression [61, 62]. Hence, summarizing the 
function of exosome in IDD and property of 
exosome-based biotherapy is necessary. 

Exosome Derived from IVD Cells 
Structure and Function of Exosome 

Exosome is a nano-sized substance which has 
spheroid membranes of a uniform lipid bilayer. It is a 
type of extracellular vesicle [63], which also includes 
microvesicles and apoptotic bodies [22]. The diameter 
range of exosome are in the 30-150 nm; microvesicles 
are in the 200-1000 nm; apoptotic bodies are in the 
800-5000 nm [64, 65]. Average diameter of exosome is 
100 nm, with the density ranging from 1.13 g/ml to 
1.19 g/ml [66-69]. It was first described by Stahl and 
Johnstone in the 1980s, as nano-sized vesicles 
discovered during reticulocyte maturation [17,70]. At 
the earliest, it was hypothesized that the function of 
exosome was to eliminate unwanted proteins of 
cellular from cytoplasm [19]. With further exploration 
in exosome, studies suggest that the function of 
exosome is potent and remarkable. It is not only the 
dumpster of cell, but could conduct the intercellular 
communication and response induction [21, 71]. 

Numerous types of cells could secrete exosome. 
It is detected in various body fluids, such as breast 
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milk, cerebral spinal fluid, amniotic fluid, bile, saliva, 
semen, blood, lymph and amniotic fluid [72-77]. 
Exosome is derived from endocytic pathway, in 
which the early secretory endosome was formed 
during the inward budding of the intracellular 
endsomal membrane, intracellular multivesicular 
bodies containing intraluminal vesicles are formed. 
With the maturation of the endosome, intraluminal 
vesicles were secreted as exosome by fusion with the 
plasma membrane [78, 79]. Hitherto, studies reveal 
that exosome could secrete various bioactive 
molecules, such as mRNA, miRNA and proteins, and 
affect receptor cells by transmitting bioactive 
molecules [24]. However, more studies are needed to 
explore the underlying mechanism of their roles. 

Exosome Derived from NP 
Increasing evidence implicates that NPc and NP 

stem cell-derived exosome participate in the process 
of IDD. Chen et al. took the IDD structure of rat 
caudal vertebra, re-cultured it in medium, thus 
utilizing IL-1β inducing senescence of NPc and 
isolating the senescence NPc-derived-exosome 
(SNPC-Exo) [80]. They uncovered that incubated with 
SNPC-Exo made normal NPc evinced a degradation- 
related manifestation, particularly in the declined 
capacity of colony and proliferation. Besides, they 
revealed that SNPC-Exo mainly regulates and 
promotes the senescence of NPc by targeting the 
P53/P21 signaling pathway. All these results 
supported that SNPC-Exo might possess bioactive 
substances that derived from SNPC and play a key 
role in accumulating the senescence of normal NPc. 

Various inflammatory and pre-inflammatory 
cytokines, such as IL-1β, IL-6, MMP-13 and TNF-α, 
participate in the process of IDD [81-86]. Zhang et al. 
[87] discovered that degenerative NPc could secrete 
exosome which carried miR-16 and directly inhibited 
the anti-apoptotic IGF-1 / IGF-1R signaling pathway, 
thereby accumulating the apoptosis of NPc. This 
research demonstrated that degenerative NPc could 
affect the normal NPc by secreting exosome to 
withhold the anti-apoptotic pathway, leading to the 
senescence and degeneration of NPc. 

Accumulating evidence implicated that NPc- 
derived-exosome (NPc-exo) not only could influence 
NPc, but exerting effect to CEP. Feng et al. [88] 
revealed that degenerative NPc-exo (dNPc-exo) could 
be taken up by CEP cells (CEPc), thereby decreasing 
the expression of Bcl-2, increasing the expression of 
Bax and Caspase-3, which are cell apoptosis makers. 
Thus, they elucidated that dNPc-exo could induce the 
apoptosis of CEPc. Also, they suggested that dNPc- 
exo could promote the degradation of ECM and the 
IDD process. Collectively, this study demonstrated 

the intercommunication between NPc-exo and CEPc, 
showing that all parts of IVD cells have intimate 
correlation. 

Autophagy, as a catabolic self-digestion progres-
sion, could sustain the cellular homeostasis via 
dislodging dysfunctional organelle debris or 
hazardous macromolecules [89]. In human 
chondrocytes, rapamycin could activate autophagy of 
articular chondrocytes, thereby promoting the 
secretion of extracellular vesicles [90]. Zhang et al. [91] 
utilized rapamycin to accumulate the autophagy of 
NPc and found that the deliverance of NPc-exo was 
promoted. They further investigated that rapamycin- 
induced NPc-exo could carry miR-27a to target and 
inhibit MMP-13, thereby suppressing the degradation 
of ECM and delaying IDD progression. Also, they 
elucidated that autophagy could promote the 
secretion of NPc-exo via targeting the RhoC/ROCK2 
pathway [92]. This research provides a potential 
strategy for fabricating a vast amount of 
bio-synthesizing exosome. 

Notochordal cells (NC) is the precursor cell of 
NPc. It appears in the embryonic stage and is 
gradually replaced by NPc during the development 
period in human. The remaining NC in the NP 
progressively disappeared after adolescence, and the 
degenerative process of IVD commenced [93]. Our 
group [94] revealed that notochordal cell-derived 
exosome (NC-exo) could mitigate the vascularization 
process of IDD. We, for the first time, unearthed the 
NC-exo and demonstrated that NC-exo could 
alleviate angiogenesis via carrying high expressed 
miR-140-5p to endothelial cells, thus regulating the 
downstream Wnt/β-catenin pathway. Additionally, 
we suggested that, for NC, 0.5 MPa is a suitable 
mechanical condition for luring the secretion of NC 
exosomes and its capacity of anti-vascularization. 
Consequently, with a spectrum of experiments, we 
elucidated that NC-exo plays a pivotal role in the 
anti-angiogenesis effect of IVD and IDD progression. 

Nevertheless, the specific biological mechanism 
of NPc-exo/NC-exo, its role in the process of IDD and 
its intercommunication with other IVD cells remains 
vague, needing further exploration and illustration. 

Exosome Derived from AF 
Recently, we [95] isolated AF-derived exosome 

(AF-exo) and stimulated the depravity of AF cell 
(AFc). With a spectrum of experimentations, we 
unveiled that degenerative AFc (dAFc) could secrete 
exosome, thus excreting pro-vascularization effect by 
promoting cell migration and inflammatory factor 
expression. Interestingly, the exosome secreted by 
non-degenerative AFc (ndAFc) could prevent blood 
vessels from growing in and retain the homeostasis of 
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IVD. So, we manifested that ndAFc and dAFc derives 
different types of exosome and acts opposite roles in 
the degradation process of IVD. Nevertheless, there is 
still no study investigates about the underlying 
molecular mechanism of AF-exo function. 

Exosome Derived from CEP 
While investigation in CEP chondrocyte-derived 

exosome is scarce, studies have shown the existence of 
CEP stem cell-derived exosome (CESCs-exo). 

Luo et al. [96] isolated and extracted the cartilage 
endplate stem cells (CESCs) and CESCs-exo. They 
revealed that CESCs-exo could promote the 
autophagy and withhold the apoptosis of NPc by 
activating PI3K/AKT/autophagy signaling pathway. 
Notably, they found that non-degenerative CESCs- 
exo is more effective than degenerative CESCs-exo. 
Besides, they figured out that non-degenerative 
CESCs-exo could impetus CESCs changing into NPc. 
CEP inflammation, however, influences this 
progression and aggravates IDD procession. 
Therefore, this study showed that CESCs-exo plays a 
striking role in the NPc degeneration. In the follow-up 
research, Luo et al. [97] found that CESCs-exo could 
activate HIF-1α/Wnt signaling pathway via autocrine 
mechanisms, thus promoting the secretion of TGF-β1 
and GATA4. All of which suggested that CESCs-exo 
could accumulate the CESCs transforming into NPCs 
and delay the development of IDD. Chen et al. [98] 
detected that miR-125-5p, secreted by CESCs-exo, 
could target histone methyltransferase (SUV39H1), 
thereby promoting NPc autophagy, suppressing NPc 
apoptosis and delaying ECM degradation. 

Collectively, all of these studies confirmed that 
CESCs-exo participates in the process of IDD. Thus, it 
is feasible to hypothesize that exosome derived from 
CEP cells (CEP-exo) also involves in IDD procession. 
Like AF-exo, non-degenerative CEP-exo and 
degenerative CEP-exo might play different roles: 
non-degenerative CEP-exo delays and reverses the 
process of IDD; degenerative CEP-exo induces and 
accelerates the process of IDD. However, this 
hypothesis needs further research to prove. 

Exosome Derived from Stem Cells 
Stem cells, the most primitive cells at the top of 

the origin of cell lines, have multi-directional 
differentiation potential and self-renewal potency. 
They are abundant and easy to obtain, can proliferate 
in the low oxygen circumstances. Notably, 
mesenchymal stem cells (MSC), as a type of stem cells, 
has the ability of self-renewal and multi-directional 
differentiation [99-101]. It was first isolated from bone 
marrow, and then unearthed in many tissues. For 
example: periosteum; muscle; placenta; fat; umbilical 

cord; umbilical cord blood; and other tissues 
[102-104]. It has great therapeutic potential. In the 
field of IDD, the studies mainly focus on bone marrow 
mesenchymal stem cells (BMMSC), adipose-derived 
mesenchymal stem cells (ADSC), human placental 
mesenchymal stem cells (HPMSCs) and urine-derived 
stem cells (USCs). 

Exosome Derived from Bone Marrow 
Mesenchymal Stem Cells 

BMMSC is derived from mesoderm and has 
multi-differentiation potential. Increasing lines of 
evidence have shown that BMMSC could be applied 
in curing diseases. For instance: spinal cord injury; 
bone regeneration; IDD; and so on. Nevertheless, it 
still has some unsolved problems, such as 
immunological reaction and potential tumorigenesis. 
Besides, severe environment of IDD also arrest 
BMMSC proliferation. Interestingly, BMMSC 
derived-exosome (BMMSC-exo) can resist the 
influence of harsh environment of IDD. Li et al. [105] 
cultured the NPc in different PH circumstances, and 
incubated it with BMMSC-exo. They revealed that, 
with the decreased of PH value, NPc and ECM 
showed a series of degradation: The proliferation of 
NPc was descended; the degradation of ECM was 
strengthened. Significantly, they discovered that 
BMMSC-exo could decelerate the apoptosis of NPC, 
promote the synthesis of chondrocyte ECM, and 
downregulate the matrix-degrading enzymes. All of 
which revealed that not only does MSC-derived- 
exosome (MSC-exo) have approximate function with 
MSC, it could also survive in abnormal biological 
ambience of IDD. This study elucidated that MSC-exo 
might be a better choice for biologic therapy. 

Numerous of studies have explored the 
BMMSC-exo function and its communication with 
NPc and APc. Lu et al. [106] first illustrated the 
intercommunication between BMMSC-exo and 
NPc-exo. They unearthed that NPc-exo could promote 
the BMMSC migration and induce BMMSC 
differentiation to the NP-like phenotype. 
Additionally, they revealed that BMMSC-exo could 
promote NPc proliferation and ECM production in 
degenerative NP. This research proved the potent 
function of BMMSC-exo and its intercommunication 
with NPc. It also elucidated that NP could impact 
MSC via secreting NPc-exo. Hu et al. [107] isolated the 
BMMSC-exo and co-cultured it with NPc. They found 
that BMMSC-exo plays a prominent part in NPc 
apoptosis process which was induced by 
compression. BMMSC-exo could inhibit compression- 
induced NPc apoptosis by suppressing oxidative 
stress. Therefore, when develops the BMMSC-based 
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injectable biological drug, considering its interrelate 
with IVD cells is pivotal. 

BMMSC-exo and its target pathways have been 
explored extensively. Advanced glycation end 
products (AGEs) [108-110], formed by non-enzymatic 
reaction of reducing sugars with free amino groups of 
macromolecules, leads to ER stress, thus activating 
the unfolded protein response (UPR) [111, 112]. 
Furthermore, UPR could initiate the C/EBP 
homologous protein, which is a responsible protein 
that modulates and induces cell apoptosis. Liao et al. 
[113] suggested that the endoplasmic reticulum (ER) 
stress markers and NPc apoptosis promoted in the 
process of IDD. They revealed that, under the AGEs 
stimulation, BMMSC-exo could alleviate ER stess- 
induced NPc apoptosis through AKT/ERK signaling 
pathway. 

PI3K/AKT/mTOR signaling pathway is a 
pivotal regulator of autophagy [114, 115]. Li et al. 
[116] revealed that BMMSC-exo could ameliorate the 
inflammation and apoptosis of AFc by inhibiting the 
expression of PI3K/AKT/mTOR signaling pathway. 

Wen et al. [117] uncovered that BMMSC-exo 
which carried miR-199a could inhibit and reverse the 
process of IDD by targeting GREM1 and 
downregulating the TGF-β pathway. Zhu et al. [118] 
found that BMMSC-exo could alleviate the NPc 
degeneration and IDD progression by delivering 
miR-142-3p to target MLK3, thereby suppressing 
MAPK signaling pathway. Wang et al. [119] unveiled 
that BMMSC-exo could deliver miR-129-5p, target 
SOX4, inhibit the activation of Wnt/β-catenin 
pathway, thus promoting the proliferation of 
degenerative NPc and the synthesis of ECM. Zhu et 
al. [120] explored that BMMSC-exo could attenuate 
the apoptosis of NPc and degradation of ECM by 
carrying miR-532-5p to inhibit target RASSF5 
pathway, which is a considerable apoptotic and/or 
senescence pathway. 

However, most of studies about BMMSC-exo 
places emphasis on exploring its communication with 
NPc. More research is needed to explore BMMSC-exo 
correlation with AF and CEP cells. 

Exosome Derived from Adipose-Derived 
Mesenchymal Stem Cells 

Despite accumulating evidence suggesting the 
benefits of BMMSC, it still has some limitation. For 
instance: expensive cost; collection difficulty; and the 
trauma to patient [121]. Thus, it is essential to explore 
other types of MSC which could be collected and 
isolated easily. Notably, ADSC has received interest 
because of its easy access [122]. ADSC and ADSC- 
derived exosome (ADSC-exo) could be applied in 
treating diseases and tissue damage, such as 

peripheral nerve injury, ischemic stroke and ruptured 
tendon [123-127]. Xing et al. [128] supported that 
ADSC-exo could inhibit the release of NLRP3, thus 
affecting the pyroptosis of NPc. Also, it could alleviate 
the expression of MMPs, thereby blocking the 
catabolism of ECM. They constructed a thermo-
sensitive acellular ECM hydrogel coupled with ADSC 
exosomes (dECM-exo), which will be discussed later. 

The studies about the function of ADSC-exo in 
IDD procession still scarce. But the application of 
ASDC in treating other diseases could provide 
inspiration. Hepatic ischemia-reperfusion (I/R) injury 
is a complex procession which includes hypoxia, 
apoptosis, inflammatory mediator and lipid 
peroxidation [129, 130]. In addition, GSK-3β could 
accumulate the expression of anti-apoptotic protein 
(Bcl-2 and survivin) in cells; ERK1/2 could induce the 
anti-apoptotic function by alleviating Bax protein and 
increasing of Bcl-2. Zhang et al. [131] revealed that 
ADSC-exo could carry PGE2, induce the inactivation 
of GSK-3β, upregulate ERK1/2, thus alleviating the 
secretion of inflammatory mediators and inhibiting 
the apoptosis of cells. Therefore, ADSC-exo might also 
carry PGE2, thereby alleviating the apoptosis of NPc. 
However, further research is needed to testify this 
hypothesis. 

Exosome Derived from Human Placental 
Mesenchymal Stem Cells 

As known to all, BMMSC is gold standard when 
choosing MSC, whereas the hardship of obtaining 
BMMSC is a difficult problem [99, 121]. Increasing 
evidence implicates that HPMSCs is easily obtained 
and ethically favored. Thus, it could be an alternative 
choice [132-134]. 

Pyroptosis, as an inflammatory cell death, is a 
pivotal mediator of inflammatory response [135]. 
Yuan et al. [136] suggested that HPMSCs-derived 
exosome (HPMSCs-exo) could carry miR-26a-5p to 
inhibit METTL14/NLRP3 signaling pathway, which 
is a noticeable pathway interrelates with the 
pyroptosis and pro-inflammatory cytokines [137-139]. 
Besides, HPMSCs-exo could alleviate the 
inflammatory conditions by suppressing cytokine 
release, thereby alleviating the pyroptosis of NPc. 

ZNFs, the functional proteins related to the 
regulation of gene expression, are regulated by 
various types of miRNA [140]. Accumulating studies 
suggested that ZNFs could regulate the cell 
proliferation. Wu et al. [141] supported that miR-1247 
could directly repress ZNF346 expression, and thus 
inhibiting the progression of childhood 
neuroblastoma. Interestingly, increasing evidence 
implicates that ZNF121 has the capacity of regulating 
cell proliferation and apoptosis [142]. Yuan et al. [143] 



Int. J. Med. Sci. 2022, Vol. 19 

 
https://www.medsci.org 

1700 

unearthed that miR-4450 specifically targeted and 
inhibited the expression of ZNF121. Besides, they 
found that the knockdown of miR-4450 showed 
protective effect on NPc. Therefore, they elucidated 
that HPLMSC-exo could carry antagomiR-4450 to 
upregulate the expression of ZNF121, thereby 
alleviating the degradation of NPc. 

Exosome Derived from Urine-derived Stem 
Cells 

USCs could be obtained from non-invasive 
sources, and have lower cost of culture and faster 
proliferative rate [144, 145]. Interestingly, Qin et al. 
[145] suggested that USCs have longer telomere 
sequences and higher telomerase activity than other 
types of MSC, which is related to the proliferation 
ability. Thus, USCs is a promising source of exosome 
extraction and stem cell therapy. 

MATN3 could promote IL-1ra expression and 
alleviate the IL-1β-induced catabolic matrix 
proteinases secretion [146]. Guo et al. [147] discovered 
that USCs-exo could carry MATN3, thereby reversing 
the degradation of ECM and the process of IDD. 

ER stress, which is mentioned above, could 
induce the apoptosis of NPc [148]. Xiang et al. [149] 
identified that USCs-exo could inhibit the secretion of 
CHOP, GRP78, caspase-3 and caspase-12, thus 
inhibiting ER stress and the NPc apoptosis. They also 
revealed that USCs-exo could alleviate ER stress- 
induced apoptosis by activating the AKT and ERK 
signaling pathway. 

Exosome-based Therapeutic Strategy 
Accumulating studies have detected that 

exosome plays a striking role in containing the 
homeostasis of IVD. For instance: increasing 
autophagy; inhibiting inflammatory response 
pathway; promoting the synthesis of ECM; and 
alleviating pyroptosis [122, 150]. Hence, it is a better 
source for biological therapeutic strategy. 

Xing et al. [128] developed an IVD biological 
hydrogel which is an ECM biological scaffolds loaded 
with exosome (dECM@exo) derived from ADSC. 
dECM, as an acellular scaffold, is a structure which 
loads the exosome. They uncovered that dECM@exo 
could slow the release of exosome while showing high 
load rate of exosomes. It is a regulator of 
inflammatory complexes and metalloproteinases. The 
combination of acellular scaffolds and exosome, both 
have low immunogenicity, makes exosome-based 
therapy be a better choice than cell-based therapy. 

PI3K/AKT/mTOR signaling pathway is a vital 
regulator of autophagy [151]. Luo et al. [152] revealed 
that Sphk2 could activate PI3K/AKT signaling 
pathway, thus promoting the autophagy of NPc and 

reversing the process of IDD. They encapsulated the 
CESCs overexpressing Sphk2 in an ECM of costal 
cartilage (ECM-Gels) and injected it near the CEP of 
rat. And then, they found that ECM-Gels could 
produce Sphk2-engineered exosomes which 
penetrated the AF and transported Sphk2 into NPc, 
activated the PI3K/AKT signaling pathway, thereby 
accumulating the autophagy of NPc. 

Taken together, compared with others, exosomes 
have many preponderances, such as lower immune 
response and higher transfer efficiency [153]. Thus, 
exosome-based therapeutic strategy has potent 
treatment potential and profound therapeutic 
implications, even further discovery is conducive to 
the development of it. Until now, some laboratories 
and companies have begun to investigate the 
engineered and mass-produced exosome. However, 
no exosome injection drugs for IDD have been 
approved for launch. The studies still stay in animal 
and preclinical experiment stage. 

Discussion 
LBP, as a chronic and prevalent condition, gives 

great burden to social economy and quality of life 
[154, 155], which is mainly caused by IDD. 
Nevertheless, the current therapeutic strategies for 
IDD could not achieve satisfactory results. Hence, it is 
essential to pursue a new therapeutic strategy. 
Exosome, which plays a striking role in IDD 
progression, has got more and more attention. 
Accumulating evidence implicates that exosome 
participates in the degradation process of IVD. 
Therefore, when investigates the pathological changes 
of IVD, taking exosome into consideration is pivotal 
(Table 1). 

 

Table 1. Exosome and its targeting ways 

Exosome derived from: Carry Target Reference 
SNPc unknown P53/P21 [80] 
DNPc miR-16 IGF-1/IGF-1R [87] 
RINPc miR-27a MMP-13 [91] 
NC miR-140-5p Wnt/β-catenin [94] 
CESCs unknown PI3K/AKT/autophagy [96] 
CESCs unknown HIF-1α/Wnt [97] 
CESCs miR-125-5p SUV39H1 [98] 
CESCs Sphk2 PI3K/AKT [152] 
BMMSC miR-199a GREM1/ TGF-β [117] 
BMMSC miR-142-3p MLK3/ MAPK [118] 
BMMSC miR-129-5p SOX4 Wnt/β-catenin [119] 
BMMSC miR-532-5p RASSF5 [120] 
BMMSC unknown AKT/ERK [113] 
BMMSC unknown PI3K/AKT/mTOR [116] 
ADSC unknown NLRP3 [128] 
HPMSCs miR-26a-5p METTL14/NLRP3 [136] 
HPMSCs antagomiR-4450 ZNF121 [143] 
USCs MATN3 unknown [147] 
USCs unknown AKT/ERK [149] 
DNPc: degenerative NPc; RINPc: rapamycin-induced NPc. 
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Figure 1. The process of IDD and exosome-based therapeutic strategy. A. In IVD, with the redundant mechanical load and other elements, the homeostasis of IVD is 
blemished. IVD also produce cross-talk which could influence the adjacent vertebrae. B. As the gradually boosts of IDD, vascular and nerves grows into IDD, and inflammatory 
cytokines cluster in IVD and surround tissues. C. Exosome that derived from non-stem cell or stem cell could carry various types of miRNA, implicate the proliferation and 
apoptosis of IVD cells, and thus delaying and reversing the IDD progression. 

 
As known to all, exosome-based drugs have 

great therapeutic potential. Nevertheless, it is 
essential to characterize the difficulties we faced. First, 
as a product secreted by various types of cells, 
exosome could be affected by multiple factors. For 
example: the source of cells; the state of cells; and the 
condition of culture. Secondly, IDD is an intricate 
process which includes manifold pathological 
changes. It is necessary to choose the exosome which 
aims at major pathological changes of IDD. Thirdly, as 
the largest avascular tissue in the body, the 
physiological condition of IVD is harsh. For instance: 
long-term internal high pressure; low pH; low 
nutrition; low oxygen; and complex inflammatory 
environment. All of which impact the activity and 
function of exosome [48]. Last but not least, the 
accurate dose and injection position of exosome-based 
drugs are still unclear. Collectively, it is pivotal to 
even further explore specific function of exosome and 
precise dose of exosome-based injectable drugs. 

Conclusion 
Exosome, as a substance which transmits 

information between cells, has attracted more and 
more attention. As a new direction for the therapeutic 
approach of IDD, exosome could influence IVD cells 
via various ways. For example: accumulating the 
autophagy; increasing the ECM synthesis; alleviating 
the apoptosis; and inhibiting the pyroptosis. Thus, it 
has remarkable potential to delay and reverse the 

onset and development of IDD. Further study is 
needed to explore the regulation mechanism of 
exosome, its intercommunication with IVD cells, and 
the safety/effectiveness of exosome-based therapeutic 
strategy (Figure 1). 
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