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Abstract 

Background: A comprehensive understanding of phenotypes related to CKD will facilitate the 
identification and management of CKD. We aimed to panoramically test and validate associations 
between multiple phenotypes and CKD using a phenotype-wide association study (PheWAS). 
Methods: 15,815 subjects from cross-sectional cohorts of the National Health and Nutrition 
Examination Survey (1999-2006) were randomly 50:50 split into training and testing sets. CKD was 
defined as eGFR < 60 mL/min/1.73m2. We performed logistic regression analyses between each of 985 
phenotypes with CKD in the training set (false discovery rate < 1%) and validated in the testing set (false 
discovery rate < 1% ). Random forest (RF) model, Nagelkerke’s Pseudo-R2, and the area under the 
receiver operating characteristic (AUROC) were used to validate the identified phenotypes. 
Results: We identified 18 phenotypes significantly related to CKD, among which retinol, red cell 
distribution width (RDW), and C-peptide were less researched. The top 5 identified phenotypes were 
blood urea nitrogen (BUN), homocysteine (HCY), retinol, parathyroid hormone (PTH), and osmolality in 
RF importance ranking. Besides, BUN, HCY, PTH, retinol, and uric acid were the most important 
phenotypes based on Pseudo-R2. AUROC of the RF model was 0.951 (full model) and 0.914 (top 5 
phenotypes).  
Conclusion: Our study demonstrated associations between multiple phenotypes with CKD from a 
holistic view, including 3 novel phenotypes: retinol, RDW, and C-peptide. Our findings provided valid 
evidence for the identification of novel biomarkers for CKD. 

Key words: chronic kidney disease; phenotype-wide association study; retinol; red cell distribution width; C-peptide. 

Introduction 
Chronic kidney disease (CKD) is a worldwide 

public health problem which results in adverse 
clinical outcomes, such as cardiovascular disease, 
kidney failure and death [1]. Currently, CKD affects 

8% to 16% of the world’s population and accounts for 
16.05 deaths per 100,000 people [2, 3]. A 
comprehensive understanding of phenotypes related 
to CKD will facilitate the control of CKD, both in 

 
Ivyspring  

International Publisher 



Int. J. Med. Sci. 2022, Vol. 19 

 
https://www.medsci.org 

1921 

disease identification and management. However, the 
research on the association between risk factors and 
CKD often focused on single factors [4-6], which may 
be subject to selection biased and false positive 
reporting and finally lead to an incomplete 
understanding of possible risk factors and 
pathogenesis of CKD. 

To address these concerns, we applied the 
“phenotype-wide association study (PheWAS)”, a 
high-throughput methodology analogous to the 
genome-wide association study (GWAS), to 
comprehensively search for new risk factors 
associated with disease [7-10]. From a holistic and 
unbiased perspective like GWAS, the PheWAS can 
evaluate multiple risk factors instead of only one 
factor at one time, which helps to overcome the 
selective reporting bias and false positive reporting 
[11, 12]. In recent years, a similar systematic approach 
has been used to explore the association between 
numerous exposomes and outcomes [7, 10, 13, 14]. 

The objective of this investigation is to 
systematically search 985 phenotypes with respect to 
CKD using the National Health and Nutrition 
Examination Survey (NHANES) from years 1999–
2006. We also investigate the prioritization and 
diagnostic accuracy of the identified phenotypes of 
CKD. We believe that using PheWAS to assess 
environment and lifestyle factors in CKD will provide 
a richer understanding of the architecture of complex 
traits. 

Method 
Study population 

We use data from the National Health and 
Nutrition Examination Survey (NHANES), a public 
access database constructed by the US Centers for 
Disease Control and Prevention (CDC). The NHANES 
recruited US civilian, non-institutionalized civilian 
residents every two years and collected participants’ 
information via in-person interviews, physical 
examinations, and laboratory data [15]. In present 
study, we included 15,815 individuals aged > 20 years 
from four cohort survey (1999-2000, 2001-2002, 
2003-2004, 2005-2006). The National Center for Health 
Statistics ethics review board approved the conduct of 
NHANES, and participants gave written informed 
consent. All methods were carried out in accordance 
with the approved guidelines. The analysis was 
deemed exempt by the CDC Institutional Review 
Board. 

Outcome definition 
Chronic kidney disease (CKD) is defined as 

glomerular filtration rate (GFR) < 60mL/min/1.73m2. 
And GFR can be measured as the renal clearance of 

exogenous filtration markers indirectly. The eGFR 
was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) formula [for 
women with Scr ≤0.7, (Scr/0.7)−0.329 × (0.993)age (× 166 
if black, × 144 if white or other); for women with Scr 
>0.7, (Scr/0.7)−1.209 × (0.993)age (× 166 if black, × 144 if 
white or other); for men with Scr ≤0.9; (Scr/0.9)−0.411 × 
(0.993)age (× 163 if black, × 141 if white or other); for 
men with Scr >0.9, (Scr/0.9)−1.209 × (0.993)age (× 163 if 
black, × 141 if white or other)] in subjects > 40 years of 
age [16]. We used the NHANES-recommended 
calibrations for serum creatinine measurements. 

Phenotypes in the PheWAS 
A total of 1,181 phenotypes were collected in the 

original dataset, and those with sample size less than 
500 and most observations (> 90%) less than detection 
threshold were excluded, remaining 985 phenotypes 
in the final analysis (Table S1). We categorized the 
phenotypes into 19 classes according to NHANES 
categorization: 31 body measurements, 19 of blood 
routine, 76 of biochemistry, 42 of nutritional status, 78 
of urine test, 38 of infection status, 39 on disease 
history, 204 on drugs used, 46 on lifestyle, 14 on living 
condition, 208 on dietary, 14 on drug addiction, 29 of 
dioxins, 35 of polychlorinated biphenyls (PCBs), 34 of 
pesticides, 9 of phenols, 15 of polybrominated 
diphenyl ethers (PBDE), 11 of polyfluorinated 
compounds and 43 of volatile organic compounds. 
The measuring methods of all the variables were 
published at https://wwwn.cdc.gov/nchs/nhanes/ 
default.aspx. 

Statistical analysis 
The analytic procedure is depicted in Figure 1. 

We performed the Kolmogorov-Smirnov test to 
evaluate the distributions of continuous variables. 
Those with P < 0.05 were considered as skewed 
distribution and log transformed. All the continuous 
variables were z-standardized. To valid our result 
within the dataset, we did a random 50:50 split of the 
dataset into training set and testing set. Baseline 
characteristics in training and testing sets were 
demonstrated using one-way ANOVA or the 
Kruskal-Wallis test forcontinuous variables and 𝜒𝜒2 
tests for categorical variables. We used logistic 
regression models to analyze the associations between 
phenotypes with CKD adjusted for sex, age, ethnicity, 
body mass index and socioeconomic status (SES) level 
in two sets. We estimated the false discovery rate 
(FDR) via the Benjamin-Hochberg procedure to 
control for the proportion of significant results that 
are false positives due to errors. We supposed a 
phenotype significant as follows: (1) FDR < 1% in the 
training set; (2) FDR <1% in the testing set, only those 
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phenotypes moved forward from the training set 
were taken into consideration; (3) Consistent direction 
of effect in both training and testing set. We computed 
the odds ratio (OR) and 95% confidence interval (CI) 
for the tentatively validated phenotypes.  

All the subsequent analyses were performed in 
the combined dataset of training and testing sets. We 
evaluated the Pearson correlations among all 
identified phenotypes and presented their correlation 
in a heat map. The more considerable correlation 
between a pair of variables, the deeper color shown in 
the graph. We then analyzed the identified 
phenotypes using a random forest (RF) model for 
multicollinearity elimination and ranked the 
phenotypes based on variable importance scores 
(increase in node purity). RF model was performed 
with 1000 decision trees, using the “randomForest” R 
package. Also, we assess the discriminative power of 
the identified phenotypes for CKD by receiver 
operating characteristic (ROC) curves. Additionally, 
we calculated Nagelkerke’s Pseudo-R2 to evaluate the 
variance of the outcome explained by validated 
phenotypes. Moreover, a random-effect META- 
analysis, graphically represented using forest plots, 

was performed to combine the 1999-2000, 2001-2002, 
2003-2004, 2005-2006 surveys to increase power for 
discovery and evaluate the heterogeneity between 
survey year. Finally, for three novel phenotypes 
identified, we performed subgroup analyses using 
logistic regression model stratified by gender, race, 
BMI, age, hypertension and diabetes. 

All statistical tests were performed in R version 
3.5.1 (The R Foundation for Statistical Computing, 
www.R-project.org). 

Results 
Baseline characteristics 

Baseline characteristics of 15,815 participants 
with or without CKD in the training and testing 
dataset are shown in Table 1. A total of 1,355 (8.6%) 
individuals were diagnosed as CKD, with 678 (8.6%) 
and 677 (8.6%) individuals in the training and testing 
sets, respectively. Individuals with CKD tended to be 
old, white, and have lower SES level in both groups. 
Besides, individuals with history of diabetes or 
hypertension were more likely to have CKD. 

 

 
Figure 1. Study flow chart of phenotype-wide association study statistical methods.  
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Figure 2. Manhattan plot showing the phenotype-wide association with chronic kidney disease in the NHANES cohorts. Y-axis presents -log10 (P value) of the adjusted logistic 
regression model for each of the phenotypes. Horizontal line indicates the level of significance corresponding to the false discovery rate less than 1%. Each x-axis label indicates 
a variable category and within each category, the interval to the label represents standardized odds ratio (OR) for each phenotype. Filled marks represent tentatively validated 
phenotypes in the testing set (p < 0.01). Analyses are adjusted for age, sex, ethnicity, body measure index and socioeconomic status (SES) level. 

 

Table 1. Baseline characteristics of Participants with/without 
CKD in training set and testing set. 

 Training dataset Testing dataset 
 CKD Non CKD P 

value 
CKD Non CKD P 

value 
N 678 7229  677 7231  
Age, 
years 

74.2±10.4 46.3±17.6 <0.001 73.8±11.2 46.4±17.5 <0.001 

Female 351(51.8%) 3754(51.9%) 0.94 350(51.7%) 3789(52.4%) 0.73 
Race       
  White 470(69.3%) 3570(49.4%) <0.001 469(69.3%) 3580(49.5%) <0.001 
Black 114(16.8%) 1401(19.4%) 0.11 116(17.1%) 1430(19.8%) 0.10 
SES   <0.001   <0.001 
Low 292(43.1%) 2805(38.8%)  297(43.9%) 2670(36.9%)  
Middle 244(36.0%) 2367(32.7%)  226(33.4%) 2363(32.7%)  
High 142(20.9%) 2057(28.5%)  154(22.7%) 2198(30.4%)  
BMI 28.2±5.8 28.5±6.5 0.24 28.7±5.9 28.5±6.3 0.41 
Family 
smoker 

91(13.4%) 1473(20.4%) <0.001 92(13.6%) 1487(20.6%) <0.001 

Diabetes 190(28.0%) 701(9.7%) <0.001 181(26.7%) 719(9.9%) <0.001 

Hyperte
nsion 

463(68.3%) 2065(28.6%) <0.001 466(68.8%) 2047(28.3%) <0.001 

CKD, chronic kidney disease; SES, Socioeconomic status; BMI, body mass index. 
Data are presented as mean ± SD or number (percentage). 

 

Association between phenotypes with CKD 
Associations for the 985 phenotypes with CKD 

adjusted for age, sex, BMI, ethnicity and 
socioeconomic position in the total sample are shown 
in a Manhattan plot with P values on the -log 10 scale 
(Figure 2). Eighteen variables showed an FDR <1% in 
the  training set and were tentatively validated (FDR 
<0.01) in the testing set. The odds ratios (ORs) and 
95% confident intervals (95%CIs) of identified 
phenotypes were shown in Table 2. In the training set, 
a higher level of red cell distribution width (RDW), 
blood urea nitrogen (BUN), uric acid (UA), 
osmolality, parathyroid hormone (PTH), C-peptide, 
homocysteine (HCY), retinol, methylmalonic acid 
(MMA) and urine albumin were associated with 
increased risk of CKD. High prevalence of 

hypertension, diabetes mellitus, and other chronic 
disease (detailed definition in Text S1) also showed a 
positive correlation with CKD. Meanwhile, inverse 
associations between hemoglobin, hematocrit, red cell 
count, and serum albumin with CKD were also 
substantiated in the training set. Besides, the effects of 
identified phenotypes in training set were similar to 
testing set. Besides, the associations between retinol, 
RDW, and C-peptide with CKD in subgroup analyses 
were consistent (Table S2-4). 

Correlation patterns of identified phenotypes 
As shown in Figure S1, the correlations among 

the validated phenotypes were evaluated using 
Pearson correlations and presented in a heatmap. 
Most phenotypes showed weak or zero correlations 
with each other (Pearson Correlation Coefficient ρ < 
0.4). Modest to strong correlations were observed 
among some phenotypes which belong to the same 
categories or share similar clinical implications. It is 
worth noting that hemoglobin, hematocrit, and red 
cell count were strongly correlated with each other, 
with correlation coefficient around 0.8. 

Ranking of identified phenotypes 
We used a RF model to eliminate 

multicollinearity and rank the identified phenotypes 
according to their classification performance. As 
shown in Table 2 and Figure 3, we prioritized the 
identified phenotypes based on variable importance 
scores: BUN, HCY, retinol, PTH, osmolality, serum 
albumin, MMA and so on. Besides, we also rank the 
identified phenotypes using Nagelkerke’s Pseudo-R2. 
We observed that BUN and HCY were the most 
influential phenotypes to CKD, followed by PTH, 
retinol, uric acid, MMA, osmolality and so on (Table 2 
and Figure 3). 



Int. J. Med. Sci. 2022, Vol. 19 
 

 
https://www.medsci.org 

1924 

 
Figure 3. Random forest importance ranking (A) and Nagelkerke’s Pseudo-R2 ranking (B) of the validated phenotypes. Random forest importance ranking (via increase in node 
purity) indicates the discriminative performance of the identified phenotypes for CKD. Nagelkerke’s Pseudo-R2 demonstrates the variance of the outcome explained by validated 
phenotypes. 

 

Diagnostic efficacy of phenotypes on CKD 
We used the areas under the ROC curve 

(AUROC) to evaluate the discriminative power of 
phenotypes identified (Table 2 and Figure S2). We 
omitted hemoglobin and hematocrit in the 
incorporated model for their strong correlation and 
collinearity with red cell count. The AUROC ranged 
from 0.529 (phosphorus) to 0.877 (BUN and 
homocysteine) for single phenotype. The AUROC for 
the model incorporated all phenotypes, and top 5 
phenotypes in the RF model except BUN were 0.951 
and 0.914, respectively (Figure S2). 

META analysis of identified phenotypes  
To further validate the effects of identified 

phenotypes, we assessed the heterogeneities using a 
random-effect meta-analysis in 1999-2000, 2001-2002, 
2003-2004, 2005-2006 surveys based on survey- 
weighted logistic regression models (Figure S3). We 
found that most of the phenotypes have mild to 
moderate heterogeneity ( I2 < 50%) in different 
surveys. However, we observed obvious hetero-
geneities in BUN ( I2 =81%), osmolality ( I2 =78%), 
C-peptide (I2=77%), urine albumin (I2=77%), uric acid 

(I2=66%), MMA (I2=58%), retinol (I2=57%), and heart 
disease ( I2 =53%). In general, despite obvious 
heterogeneities in some phenotypes, the effects of 
each phenotype were similar in different surveys. 

Discussion 
In an analysis of evaluating 985 phenotypes in 

the NHANES using PheWAS, we found 18 
phenotypes highly related to CKD, among which 
some are well-documented risk factors for CKD, but 
some are less researched previously, e.g., retinol, 
RDW, and C-peptide. The combination of identified 
phenotypes showed a well diagnostic efficacy for 
CKD. To our knowledge, the current study was the 
first to evaluate multiple phenotypes with CKD 
simultaneously and systematically to date, including 
environmental and clinical traits. Despite its 
exploratory nature, the PheWAS methodology 
provided a panoramic understanding of the multiple 
risk factors related to CKD, which may guide 
subsequent research, promote the diagnosis of CKD 
and imply potential mechanisms in the pathogenesis 
of CKD.  

Our findings based on PheWAS offered a 
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panoramic insight into the search for multiple factors 
of CKD at one time [17]. All the identified phenotypes 
belong to clinical categories, and no environmental 
phenotype was validated, which indicated very little 
correlation between environmental phenotypes with 
CKD. We corroborated some acknowledged clinical 
phenotypes which have been proved to be associated 
with CKD in previous studies. BUN, a most 
discriminating and influential phenotype, has been 
considered as a marker of CKD and was used to 
calculate GFR [18]. Hyperhomocysteinemia, hyper-
uricemia, hypoproteinemia, hyper-phosphatemia, 
methylmalonic acidemia, increased PTH, and serum 
osmolality level were significantly associated with 
CKD in prior studies [19-25]. Besides, urinary 
albumin, as a marker of impairment of renal function, 
has been widely used in prognosis in CKD [26]. 
Several studies revealed decreased levels of 
hemoglobin, hematocrit, and red cell count in patients 
with CKD due to deficiency of erythropoietin and 
shortening of red blood cell lifespan [27, 28]. In 
addition, CKD is often accompanied by chronic 
diseases, such as hypertension and heart disease [29, 
30]. Our results provided further evidence for 
supporting these findings. 

A notable finding was the significant association 
between serum retinol and CKD prevalence. Retinol 
showed well discrimination power in our RF model 
and had well diagnostic efficacy compared to other 
factors. However, previous work mainly focused on 
the association between retinol binding protein (RBP) 
with CKD, but less study was concerned with retinol 
levels [31, 32]. Cabré et al. indicated that RBP, a 
transport protein of retinol, might be a marker of renal 

dysfunction in type 2 diabetic population [33]. Indeed, 
Vannucchi et al. have verified the correlation between 
retinol level and RBP level [34]. Hence, the 
relationship between retinol and CKD and the 
underlying mechanism deserve to be explored. There 
are some possible explanations to explain this 
observation. The impairment of excretion function in 
patients with CKD may result in the accumulation of 
RBP, thus causing an elevated retinol level [35]; 
meanwhile, a positive feedback regulation to promote 
releasing of retinol-RBP-complex from the liver, may 
also lead to increased retinol level [36]. This was 
supported by a cross-sectional study involving 105 
children, which reported elevated levels of retinol in 
children with early CKD [37]. We believe that retinol 
levels may reflect the renal function and could be a 
marker for CKD. Therefore, further validation of the 
association retinol with CKD is required to facilitate 
its application in the diagnosis and prediction of CKD.  

Red cell distribution width, an index reflecting 
the volume variability of red blood cell, was another 
surprising finding with solid correlation with CKD. 
Recent evidence suggested that RDW was 
significantly associated with adverse clinical 
outcomes, such as mortality and cardiovascular 
disease [38, 39]. However, poor study was found on 
the association between RDW and CKD. Our finding 
could have been generated by two possible 
mechanisms. RDW is highly correlated with oxidative 
stress and subsequent endothelial dysfunction, which 
are known as risk factors of CKD [40, 41]. Meanwhile, 
metabolic disturbance of folic acid and vitamin B12, 
manifested as elevated RDW level, also contributes to 
the incidence of CKD [42]. 

 
 

Table 2. Adjusted Estimated Differences in CKD Associated with Phenotypes. 

Phenotypes Category Training dataset Testing dataset RF 
ranking 

Pseudo 
R2 

AUROC 
N CKD OR (95%) FDR N CKD OR (95%) FDR 

Hemoglobin Blood routine 7898 678 0.64 (0.57, 0.71) 8.91e-14 7900 674 0.58 (0.53, 0.64) 8.12e-23 11 0.4283 0.619 
Hematocrit Blood routine 7898 678 0.64 (0.58, 0.71) 4.49e-14 7900 674 0.59 (0.53, 0.65) 1.62e-21 13 0.4282 0.609 
Red cell count Blood routine 7898 678 0.68 (0.62, 0.75) 3.67e-11 7900 674 0.62 (0.56, 0.68) 5.08e-19 8 0.4255 0.645 
RDW Blood routine 7898 678 1.29 (1.19, 1.40) 5.15e-07 7900 674 1.41 (1.30, 1.54) 1.51e-14 10 0.4201 0.674 
BUN Biochemistry 7907 678 5.05 (4.35, 5.89) 1.18e-94 7908 677 5.92 (5.04, 6.99) 3.61e-99 1 0.5593 0.877 
Uric acid Biochemistry 7907 678 2.57 (2.26, 2.93) 3.11e-43 7907 677 3.22 (2.83, 3.70) 1.50e-64 9 0.4774 0.729 
Osmolality Biochemistry 7907 678 1.93 (1.74, 2.14) 2.38e-32 7907 677 1.82 (1.65, 2.02) 2.39e-29 5 0.4466 0.751 
PTH Biochemistry 4137 427 2.09 (1.82, 2.40) 3.53e-22 4907 430 1.71 (1.50, 1.96) 1.34e-14 4 0.4880 0.716 
Phosphorus Biochemistry 7905 677 1.49 (1.35, 1.64) 4.66e-12 7908 677 1.38 (1.25, 1.53) 1.02e-09 14 0.4217 0.525 
Serum Albumin Biochemistry 7907 678 0.70 (0.63, 0.79) 2.10e-06 7908 677 0.72 (0.64, 0.80) 4.06e-09 6 0.4176 0.611 
C-peptide Biochemistry 2869 241 1.80 (1.50, 2.18) 8.54e-07 2857 219 2.40 (1.95, 2.97) 2.13e-15 16 0.4354 0.688 
Homocysteine Nutritional index 7891 677 3.15 (2.81, 3.55) 3.29e-79 7887 675 3.23 (2.88, 3.67) 8.05e-80 2 0.5064 0.877 
Retinol Nutritional index 7884 676 2.77 (2.45, 3.15) 2.02e-55 7879 673 3.03 (2.67, 3.45) 3.59e-64 3 0.4861 0.764 
MMA Nutritional index 5685 457 2.00 (1.79, 2.24) 1.09e-31 5779 456 2.25 (2.01, 2.53) 1.62e-43 7 0.4544 0.836 
Urine Albumin Urine test 7818 655 1.57 (1.44, 1.71) 6.03e-22 7824 645 1.64 (1.51, 1.79) 3.32e-28 12 0.4400 0.655 
Chronic disease Disease history 7907 678 1.69 (1.52, 1.88) 1.33e-19 7908 677 1.54 (1.39, 1.71) 6.10e-15 15 0.4283 0.760 
Hypertension Disease history 7907 678 2.28 (1.87, 2.78) 3.68e-13 7908 677 2.22 (1.82, 2.70) 1.51e-14 18 0.4252 0.701 
Heart disease Disease history 7907 678 2.20 (1.77, 2.72) 1.06e-09 7908 677 2.23 (1.80, 2.75) 6.26e-13 17 0.4214 0.631 

RDW, red cell distribution width; BUN, blood urea nitrogen; PTH, parathyroid hormone; MMA, methylmalonic acid. Adjusted for sex, age, ethnicity, body mass index and 
socioeconomic status (SES) level. 
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We also verified the relationship between 
increased C-peptide concentration and incident CKD 
in our study. C-peptide, as a cleavage product of 
proinsulin, showed strong correlation with renal 
function in patients with diabetic nephropathy in a 
number of studies [43, 44]. In an observational study 
involving 132 diabetics, Wong et al. reported a marked 
elevated concentration of serum C-peptide in those 
with end-stage renal failure [43]. In the present study, 
we proved that phenomenon among population with 
CKD, and that not confined to diabetic nephropathy. 
Our observation was in good consistent with Adrian’s 
study, which showed increased serum C-peptide level 
in both diabetic ESRD population and nondiabetic 
ESRD population [45]. A possible explanation for this 
may be that kidney is responsible for the metabolism 
and excretion of C-peptide so a decline renal function 
may result in the accumulation of C-peptide. 

Knowing the phenotypes highly related to CKD 
may improve the diagnostic efficacy for CKD. We 
hoped to develop a simplified diagnostic model 
capable of discriminating those with CKD. In our 
study, combination of identified phenotypes showed 
an excellent diagnostic value for CKD based on the 
ROC curve (AUROC=0.951 for full model and 0.914 
for top 5 novel phenotypes). This diagnostic model 
will be helpful for clinicians to identify those who 
require intensive treatment and follow-up. Besides, 
most of these factors can be obtained from blood test 
and simple history inquiry, which will facilitate their 
application in clinical practice. 

PheWAS, a data-driven approach capable of 
searching multiple phenotypes simultaneously, is 
able to generate hypothesis in patients with CKD for 
direct subsequent research. This methodology can 
overcome the limitation of selective reporting and 
eliminate factors with small effects [46]. In order to 
obtain reliable results, we conducted internal 
cross-validation by random 50:50 split of the dataset 
into training set and testing set. We also validated the 
results by prioritizing the phenotypes based on RF 
model and Nagelkerke’s Pseudo-R2, which indicated 
their differential performance and contribution for 
CKD, respectively. Besides, it should be noted that we 
used a large cross-sectional study with a large number 
of environmental and clinical phenotypes. The large 
sample size ensured the power and robustness of 
statistical analysis, and plenty of phenotypes enable a 
comprehensive correlation analysis. 

Several limitations in our study should be 
considered. First, although some stronger correlations 
between phenotypes with CKD were found, they 
should be interpreted as correlative rather than 
causal. Further compelling evidence are needed to 
make causal inferences. Second, despite adjustment of 

covariates as much as possible, residual confounding 
might not be neglected and lead to bias inevitably in 
an observational study. Third, a total of 110 
phenotypes fails to reach a minimum sample size of 
500, therefore we are unable to include these 
phenotypes in our study which may result in missing 
important phenotypes. Finally, as NHANES is an 
observational study, the issue of reverse causality is 
unavoidable, which need further validation through 
Mendelian randomization or randomized trails. 
Besides, validation of the identified phenotypes in a 
prospective cohort may also provide persuasive 
evidence. 

Conclusion 
Overall, we identified 18 phenotypes which 

demonstrate robust associations with CKD, including 
three novel phenotypes. The finding provided valid 
evidence for identifying of biomarkers for CKD and 
established an excellent diagnostic model with well 
diagnostic efficacy.  
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