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Abstract 

Spinal cord injury (SCI) results in acute inflammatory responses and secondary damages, including 

neuronal and glial cell death, axonal damage and demyelination, and blood-brain barrier (BBB) damage, 

eventually leading to neuronal dysfunction and other complications. C-X-C motif Chemokine Ligand 10 

(CXCL10) is expressed after the injury, playing multiple roles in the development and progression of SCI. 

Moreover, the CXCL10 antagonist can restrict inflammatory immune responses and promote neuronal 

regeneration and functional recovery. In this review, we summarize the structure and biological functions 

of CXCL10, and the roles of the CXCL10 / CXCR3 axis in acute inflammatory responses, secondary 

damages, and complications during SCI, thus providing a potential theoretical basis by highlighting 

CXCL10 as a new potential drug target for the treatment of SCI. 
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Introduction 

Spinal cord injury (SCI) refers to an injury in the 
spinal cord, usually caused by external physical 
impact [1]. Traffic accidents and falls constitute the 
major causes of SCI [2, 3]. SCI causes a series of 
complex pathological changes. It directly causes 
neuronal damage, cell death, ischemic injury, and 
inflammation. Also, it leads to complex secondary 
damages, such as the formation of glial scar composed 
of reactive astrocytes at locations both proximal and 
distal to the injury site, and degenerative lesions in the 
tissue and structure of the spinal cord namely the 
formation of the cystic cavity [4-9]. Glial scars and 
cystic cavities cause poor regeneration of myelin and 
axons, finally leading to permanent neurological 
deficits characterized by long-term sequelae and 
complications, including loss of motor functions, 
vegetative nervous system dysfunctions, neuropathic 
pain syndromes, and even cognitive impairment [4, 
10-12]. 

The effects of SCI on patients result in a loss of 
self-care and an increased risk of death [13]. The acute 
mortality rate during hospitalizations ranges from 4% 

to 17%. After leaving the hospital, the annual 
mortality rate remains high: 3.8% in the first year and 
1.6% in the second year after the injury, and it remains 
at 1.2% thereafter [14]. Given the serious long-term 
effects of SCI, it is critical to develop effective 
treatments for those cases that cannot be prevented. 

The secondary damage is defined as the 
pathological cascade caused by the primary injury, 
which has been the focus of research in the past 
several decades. Post-traumatic inflammation is 
considered to be an important influencing factor of 
secondary damage. Inflammatory factors and 
inflammatory factors-mediated inflammatory respon-
ses can significantly promote or inhibit the repair 
process of SCI during acute, subacute, and chronic 
phases [15-18]. The binding of chemokines to their 
receptors is an essential component of many 
secondary inflammatory mechanisms during these 
phases [19]. In particular, CXCL10, known as IP-10 
(Interferon-gamma inducible Protein 10 kDa), belongs 
to the ELR- CXC subfamily of chemokines. CXCL10 
functions by binding to C-X-C chemokine receptor 
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type 3 (CXCR3), and CXCL10 / CXCR3 axis plays a 
pro-inflammatory role in immunoreaction [20, 21]. 

CXCL10 exerts a wide range of functions in 
several main pathophysiological changes in SCI, such 
as inflammatory cell recruitment, angiogenesis 
inhibition, apoptosis promotion, neuronal loss, axonal 
injury, neuropathic pain, and impaired motor 
function recovery [22-25]. We therefore speculate that 
targeting CXCL10 and its receptor is of great potential 
therapeutic value in the management of SCI. 

We here briefly review the structure and 
biological functions of CXCL10 and elucidate the 
critical role of CXCL10 in the pathogenesis of 
inflammatory responses and secondary damages to 
SCI, which may provide a theoretical basis for 
CXCL10 as a potential biomarker and therapeutic 
target of the central nervous system (CNS) 
inflammatory responses. 

CXCL10 and its Receptor CXCR3 

CXCL10 

Chemokines, with a molecular weight ranging 
from 8 kDa to 12 kDa, are involved in a wide range of 
physiological and pathological processes in the CNS. 
Based on the presence of cysteine moieties at the 
N-terminal sequences of a protein, chemokines can be 
divided into four subgroups (C-, CC-, CXC-, and 
CX3C-, defined based on four conserved cysteine 

residues that form disulfide bonds), which act on G 
protein-coupled chemokine receptors [26, 27]. In the 
adult CNS, chemokines and their receptors are 
involved in developmental, physiological, and 
pathological processes, such as inducing cell 
migrations, promoting cellular interactions, activating 
intracellular signaling pathways, and maintaining 
CNS homeostasis [28]. 

CXCL10 was initially identified as a chemokine 
induced by IFN-γ [29]. It belongs to the CXC 
subfamily of chemokines, which contains four 
conserved cysteine residue motifs linked by 
intervening amino acids between the first two 
conserved cysteines [27]. According to the presence or 
absence of the acid-leucine-arginine (Glu-Leu-Arg, 
ELR) motif in the N-terminal region, CXC chemokines 
can be divided into two subgroups: ELR+ CXC 
chemokines can promote angiogenesis, whereas ELR- 

chemokines, such as CXCL10, can inhibit 
angiogenesis [20, 30]. 

CXCL10 can be secreted by various types of cells, 
including immune cells such as T lymphocytes, 
neutrophils, eosinophils and monocytes. It can also be 
secreted by stromal cells, including thyroid cells, 
splenocytes, endothelial cells, fibroblasts, and 
keratinocytes [31-34]. TNFα, IFNα, β and γ are all 
inducers of CXCL10 [35-37].  

 

 
Figure 1. Downstream effects of CXCL10 / CXCR3 signaling pathway. CXCR3-A promotes proliferation, cell survival, chemotaxis, and invasion, while CXCR3-B 

mediates growth inhibition, apoptosis, and vascular inhibition. 
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CXCR3 

CXCR3, also known as GPR9 or CD183, is a G 
protein-coupled seven-transmembrane receptor that 
can also be expressed in immune cells such as CD4+ T 
lymphocytes, CD8+ T lymphocytes, and NK cells, and 
in stromal cells such as endothelial cells, glomerular 
mesangial cells, trophoblasts, and keratinocytes [38, 
39]. CXCR3 can be divided into three subtypes (Figure 
1): CXCR3-A, CXCR3-B, and CXCR3-alt [40-43], 
among which CXCR3-A and CXCR3-B are expressed 
in neurons [41, 44]. CXCR3-A signaling promotes cell 
migration and invasion via the PLCβ3 / μ-calpain 
signaling pathway in prostate cancer [45]. CXCL10 
also binds to the CXCR3-A subtype, fully induces Gαi 
activation and extracellular signal-regulated kinase 
(ERK) 1 / 2 phosphorylation, and partially induces 
the recruitment of β-arrestin protein [40]. CXCR3-A 
mediates chemotactic responses via MAPK and PI3K 
/ AKT signaling pathways in human airway 
epithelial cells [46]. Activation of CXCR3-B can inhibit 
angiogenesis or proliferation and promote apoptosis 
[47]. CXCL10 acts as an angiostatic agent, via 
CXCR3-B signal-mediated PKA phosphorylation of 
m-calpain to prevent endothelial cell motility [48-51] 
or via activation of p38/MAPK activation in human 
microvascular endothelial cells [52]. CXCR3-B 
mediates growth inhibition or apoptosis via 
p38/MAPK activation following the downregulation 
of heme oxygenase 1 (HO1) and the translocation of 
Bach1 and Nrf2 in human renal cancer cells and breast 
cancer cells [53]. Although CXCL10 can somewhat 
induce the activation of CXCR3-alt, its role in this 
process is unclear [54]. 

The Basic Functions of CXCL10 / CXCR3 axis 

CXCL10 has a variety of biological functions 
such as chemotaxis, differentiation, activation of 
immune cells, regulation of apoptosis, and 
neovascularization inhibition through the CXCL10 / 
CXCR3 axis.  

One of the basic functions of CXCL10 / CXCR3 
axis is that activation of the CXCL10 / CXCR3 axis 
activates the inflammatory cells and orchestrates 
inflammatory cell migration. For example, it activates 
microglia and directs them to the site of injury [42, 55, 
56]. And it forms an amplified feedback loop in 
activating the inflammatory cells. In CD4+ T 
lymphocytes, CXCR3 is induced by T cell receptor 
(TCR), enhancing the production of IFNγ and TNFα, 
which stimulates various cells to secrete CXCL10, thus 
forming an amplified feedback loop and perpetuating 
the immune cascade [57, 58]. Besides CD4+ T 
lymphocytes, CXCL10 also stimulates the directional 
migration of CD29+ T lymphocytes and monocytes, as 
well as potentiates T lymphocyte adhesion to 

endothelium [59]. In addition, CXCL10 directs CD8+ T 
lymphocytes and NK cells recruiting in CNS immune 
response [60-63]. Besides T lymphocyte recruitment, 
CXCL10 induces eosinophil chemotaxis, which can be 
blocked by the anti-CXCR3 monoclonal antibody, via 
CXCR3 inactivation on eosinophils [64]. Therefore, 
CXCL10 plays an immunoregulatory role in innate 
and adaptive immunity. 

In addition, CXCL10 functions as a suppressor of 
neovascularization by inhibiting the expression of 
various angiogenic factors in vivo, including VEGF a 
and c, and MMP13, and directly inducing endothelial 
cell apoptosis. In vitro, CXCL10 inhibits endothelial 
differentiation into tubular capillary structures in a 
dose-dependent manner, whereas it does not affect 
endothelial cell growth and migration [65, 66]. 

Expressions and Roles of CXCL10 in the 
CNS 

The CNS consists mainly of neurons and glial 
cells, and a small amount of vascular and connective 
tissues. Neurons undertake the main functions of the 
nervous system, and the glial cells (including astro-
cytes, oligodendrocytes, and microglia) participate in 
the formation of the blood-brain barrier (BBB), 
controlling immune responses in a dominant manner, 
and participating in nerve repair and regeneration. 

Under physiological conditions, CXCL10 expres-
sion in the CNS is not detectable. However, the CNS 
cells can synthesize chemokines and bind to them via 
receptors on their surface, thus producing chemotaxis 
and other functions [67, 68]. 

Expressions and Roles of CXCL10 in Neurons 

The immune response of the nervous system is 
predominantly undertaken by glial cells. However, in 
some cases, like viral infection, neurons expressing 
CXCL10 trigger inflammatory responses in the 
absence of glial cells. Viral dsRNA binds to TLR 
receptors on nerve cells, leading to a virus-mediated 
innate immune response that results in the expression 
of the inflammatory cytokines IL6 and TNFα, 
chemokines CCL5 and CXCL10, and the antiviral 
molecule IFNβ [69]. CXCL10 can be toxic to cells in 
the CNS. For example, CXCL10 can directly cause 
astrocyte death along with indirect neuronal death in 
HIV1 Nef protein-mediated neuronal cell death [70]. 

In human fetal neuron/astrocyte co-culture and 
human NT-2 neurons, CXCL10 was sufficient to 
induce apoptosis. In addition, a surge in CXCL10 
expression under a variety of pathological conditions 
can lead to neuronal death and loss. CXCL10 can 
serve as a functional biomarker of human cerebral 
malaria (HCM) mortality and promote apoptosis of 
brain neurons and glial cells [71, 72]. In HIV1-infected 
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patients, CXCL10, in combination with HIV1, can 
synergistically enhance neuronal toxicity, which can 
be inhibited by blocking CXCR3 and its downstream 
MAPK signaling pathway [73]. 

The neurotoxic mechanisms involving CXCL10 
are as follows: CXCL10 induces apoptosis through the 
mitochondria-dependent pathway by increasing the 
intracellular load of calcium released from the 
endoplasmic reticulum, leading to the mitochondrial 
release of cytochrome C (Cyt C) and cleavage- 
activation of caspase3 [74-76]. 

The Expression and Roles of CXCL10 in Glial 

Cells 

In the CNS, chemokines, expressed primarily by 
glial cells, recruit lymphocytes and phagocytes to 
inflammatory and infected areas and promote the 
immune response. Astrocytes and microglia exert a 
definite role in CXCL10 secretion. Microglia are 
resident macrophages in the CNS [77]. They provide 
immune defense and contribute to multiple functions 
during CNS development and maturation. Microglia 
secrete CXCL10 under a variety of conditions. For 
example, Borrelia burgdorferi, the pathogen of 
neuroborreliosis, can induce increased expression and 
secretion of CXCL10, which may be involved in a 
stronger activation effect on neuroinflammation 
induced by dead Borrelia burgdorferi [78].  

Stimulation of human microglia by LPS or IFNβ 
produced during spirochete infection results in 
enhanced transcription of CXCL10 and microglia- 
derived CXCL10 secretion [79-82]. IFNβ promotes 
CXCL10 expression in microglia through the 
JAK-STAT signaling pathway and LPS can bind to 
TLR4 receptor and induce nuclear translocations of 
IFN Response factor 3 (IRF 3) or NFκB to promote 
CXCL10 expression in microglia [83-86].  

Astrocytes also play a role in secreting CXCL10 
in a variety of diseases. CXCL10 attracts phagocytes 
and promotes inflammatory responses. And human 
astrocytes and microvascular endothelial cells 
produce specific chemokines including CXCL10 to 
attract phagocytic cells and promote an inflammatory 
response in Borrelia burgdorferi infection [87]. 
Astrocytes expressing CXCL10 enhance viral infection 
and neuronal damage through the binding of TLR3 
receptors to viral dsRNA [88]. Astrocytes are the main 
sources of CXCL10 in Zika virus infection, Japanese 
encephalitis virus infection, and HIV-associated 
encephalitis [67, 73, 89, 90]. Astrocytes are also a major 
source of CXCL10 in neurodegenerative diseases. 
During the development of AD, the expression of 
CXCL10 is significantly increased in astrocytes, where 
it activates the ERK1 / 2 signaling pathway in mouse 
cortical neurons and forms a neuron-glial interaction 

[43, 76, 91]. Astrocytes are also the primary source of 
CXCL10 in the pathogenesis of CNS immune diseases, 
such as multiple sclerosis (MS) [82, 92-96].  

CXCL10 binds to CXCR3 expressed by microglia 
and astrocytes, and the effect of CXCL10 on microglia 
and astrocytes is mainly focused on their migration 
promotion effects [97, 98]. CXCL10 binds to CXCR3 to 
induce calcium influx and electrophysiological 
responses, resulting in the recruitment of distal 
microglia via chemotaxis [97, 99, 100]. However, the 
proliferation of microglia is not affected [42]. In 
addition, CXCL10 / CXCR3 axis is closely related to 
the activation of glial cells, and CXCR3 deficiency 
significantly weakens the activation of microglia and 
astrocytes [101]. Moreover, CXCL10 also induces 
apoptosis in a dose-dependent manner in glial cells, in 
which it induces the expression and activation of 
caspase 3 and 7, thus increasing the percentage of 
apoptotic human neuroglia cells from 12% to 40.6% 
[102]. 

Oligodendrocytes function as myelin-forming 
cells in the CNS, wrapping around multiple nerve 
fibers to form the myelin sheath. However, there are 
few studies on CXCL10 secreted by oligodendrocytes. 
It has been reported that oligodendrocytes can 
express a variety of chemokines including CXCL10 in 
the presence of IFNγ [103]. Therefore, most studies 
focus on the role of CXCL10 on oligodendrocytes in 
myelination. Some studies demonstrated that CXCL10 
expression is highly upregulated by IL1β and IFNγ, in 
hypertrophic astrocytes surrounding active MS 
lesions, and CXCL10 finally interferes with myelin 
formation by acting on CXCR3 receptors on 
oligodendrocytes [92, 104-106]. 

The Role of CXCL10 in SCI 

Basic Pathological Manifestations of SCI 

According to the time course, SCI can be divided 
into acute (0-48 hours), subacute (48 hours-14 days), 
intermediate (14 days-6 months), and chronic (>6 
months) phases [107]. The acute phase is 
characterized by bleeding, edema, inflammatory cell 
infiltration, the release of cytotoxic products, and cell 
death (Figure 2). After SCI, the reduced sympathetic 
tone and autonomous blood flow modulation 
mechanism cause a significant decrease in the spinal 
cord blood flow (SCBF) and the mean systemic 
arterial blood pressure (ABP), leading to ischemia at 
the injury site, which can last for days or even weeks 
[108, 109]. Moreover, the trauma directly leads to the 
displacement or rupture of the spine, resulting in 
compression or damage to the spinal cord and the 
destruction of the blood-spinal cord barrier (BSCB) 
environment, exposing the damaged spinal cord 
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tissue to peripheral cytokines and blood cells [110]. As 
a result, local cells die due to changes in cell 
permeability, initiation of pre-apoptotic signaling, 
and ischemia caused by vascular damage [111, 112]. 
Dead cells release ATP, DNA, and K+, which activate 
the microglia to secrete pro-inflammatory cytokines 
including CXCL10, causing local inflammatory cell 
infiltration. 

Microglia and endothelial cells play a role as 
antigen-presenting cells (APC) during the initial stage 
of injury. T lymphocyte infiltration preceding the bulk 
of monocyte influx and macrophage activation 
continues throughout the acute to subacute phase 
[113]. Inflammatory cells accumulate at the injury site, 
releasing cytokines such as TNF, IL1, IL18, CCL2, and 
MMP9, and cytotoxic molecules like glutamate, which 
have neuroexcitatory toxicity and can cause spinal 
cord white matter hypoxia and traumatic injury 
[114-119]. In particular, it is observed that the 
infiltrating macrophages develop into M1 
macrophage subsets and express pro-inflammatory 
cytokines such as CXCL10 and IL12p70 [120]. 

In the later acute phase to subacute phase, 
progressive edema exacerbates the post-injury 
microenvironment. In this case, the inflammatory 
cells stay in the spinal cord and continuously intensify 
the inflammatory response from the acute to subacute 
phase, resulting in further edema of multiple adjacent 
spinal segments. In the subacute phase, edema, 
combined with vascular thrombosis and vasospasm, 
causes ischemia and exacerbates infiltration of 
inflammatory cells, further leading to cell death. 
Cystic cavities containing extracellular fluids, small 
bands of connective tissue, and macrophages start to 
form as a consequence [121, 122]. Astrocytes 
proliferate and deposit into the surrounding area of 
the lesion core. During the intermediate phase to the 

chronic phase, axons continue to degenerate. And 
mature glial scars and cystic cavities further inhibit 
axonal regeneration and cell migration [123]. 

SCI-induced CXCL10 Changes in the Spinal 

Cord, the Cerebrospinal Fluid and the Blood 

Serum 

The changes in the CXCL10 expression level 
show a certain correlation with the process of 
secondary damages. In humans or a variety of animal 
models like those in rats or mice, increased CXCL10 
expression levels can be detected in the core area of 
the spinal cord, serum, and cerebrospinal fluid (CSF).  

As reported by McTigue et al, the mRNA 
expression of CXCL10 can be detected from 6 hours to 
28 days in the lesion core of rats after SCI, with the 
peak identified at 6 hours post-injury [124]. Although 
the expression level of CXCL10 decreases after 6 
hours post-injury, it is still significantly high at 12 

hours post-injury and is attenuated to the control 

level subsequently [124]. In particular, the mRNA 
expression of CXCL10 is visible in the mouse spinal 
cord 30 minutes post-injury [125]. All these reports 
indicate that CXCL10 is mainly expressed by cells in 
the lesion core during the acute phase of SCI 
including microglia, astrocytes, and other inflam-
matory cells such as NK cells, CD8+ T lymphocytes, 
and macrophages [22, 123, 126, 127]. Furthermore, 
inflammatory cells like microglia in the spinal cord 
are sufficient to trigger an inflammatory response 
without the presence of peripheral blood-derived cells 
in the mouse SCI model [125]. Microglia are the main 
source of CXCL10 in early acute injury, and CXCL10 
is co-expressed in microglia and other inflammatory 
cells, including astrocytes and macrophages [56, 120, 
128]. 

 

 
Figure 2. SCI results in secondary injuries, as well as local and systemic complications. In the lesion core, the injury leads to neuronal death, axonal damage and 

demyelination, and other complications. 
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There are few studies about the expression of 
CXCL10 in CSF. Casha et al reported that CXCL10 
significantly increases at 6 h post-injury, and then 
reaches the peak within 2 days in the acute phase, 
followed by a slight decrease at day 3, and a more 
sustained increase between days 4 and 7, exhibiting a 
bimodal release mode [118]. 

The trend of CXCL10 concentration changes in 
the peripheral blood is relatively consistent with that 
in the CSF. Hassanshahi et al reported that the 
concentration of CXCL10 increases significantly in the 
acute SCI phase (3-6 hours post-injury), reaches the 
maximum value after the subacute phase (7 days), 
and then decreases. Notably, significantly increased 
CXCL10 concentration can still be detected after the 
intermediate phase (28 d) until 30 days post-injury 
when the concentration of CXCL10 is equal to that of 
the control [129, 130]. 

To summarize, the level of CXCL10 in the CSF, 
the peripheral blood, and the lesion core is relatively 
consistent over time. CXCL10 exhibits a high level in 
the acute phase post-injury, and the level maintains at 
higher concentrations in the subacute phase, and 
remains obvious in the intermediate period, 
suggesting a certain relationship between the changes 
of CXCL10 and the secondary damage. 

Roles of CXCL10 in SCI-induced 

Neuroinflammation 

In the acute phase of mice injury, Rice et al 
reported that the activated microglia of the CNS 
release a large amount of CXCL10 at 3 hours 
post-injury, playing a key role in inflammatory cell 
aggregation [125]. CNS-derived CXCL10 performs 
their function of CD4+ Th1 cells recruitment by 
binding to the CXCR3-A receptor, and then CD4+ Th1 
cells secrete IL2, IFN, TNF, and other cytokines to 
participate in the regulation of cellular immunity, 
enhance macrophage toxicity, regulate the 
differentiation of CD8+ T lymphocytes, and trigger the 
immune response. In the meantime, the immune cells 
recruited in response to CXCL10 also release CXCL10, 
resulting in a cascade reaction [24, 120]. 

There may be two reasons for the destruction of 
the BBB caused by CXCL10 in the acute phase. On the 
one hand, the BBB structure maintains the 
homeostasis of the CNS and restricts the recruitment 
of peripheral immune cells into the brain parenchyma 
composed of brain microvascular endothelial cells, 
pericytes, and astrocyte endfeet. CXCL10 inhibits the 
migration of endothelial cells through the CXCR3-B 
receptor, inhibits DNA synthesis, and promotes 
endothelial cell apoptosis, thus destroying the BBB 
[47, 102]. On the other hand, CXCL10 drives the 

aggravation of inflammatory responses and indirectly 
disrupts the BBB by oxidative stress and neurotoxic 
molecules [131]. This oxidative stress is generated by 
reactive oxygen species and nitric oxides released by 
inflammatory cells such as microglia and astrocytes, 
and neurotoxic molecules including prostaglandin, 
cyclooxygenase 2, MCP1 and MIP1α, as well as 
pro-inflammatory cytokines IL6, TNFα, and IL1β 
[131]. Therefore, CXCL10 involved in destruction of 
BBB in the acute phase, which creates a unique 
condition for the accumulation of peripheral immune 
cells, expanding the immune response from the local 
region to the whole CNS.  

The early immune response plays a positive role 
in the recovery of SCI. To illustrate, immune cells can 
help to remove tissue debris and trigger the release of 
various neurotrophic factors [16, 132]. However, this 
autoimmune response gets out of control over time, 
resulting in secondary degenerative pathologies 
followed by continued axonal degeneration and glial 
scar maturation, thus causing detrimental conseq-
uences to spontaneous recovery from SCI. A high 
level of CXCL10 in the CSF during the subacute stages 
of SCI plays a key role in the secondary degenerative 
pathologies by restricting revascularization and 
axonal regeneration, resulting in the loss of the spinal 
cord tissue [22]. 

Potential Underlying Mechanisms for the Role 

of CXCL10 in SCI 

CXCL10 generates biological effects in SCI 
through interacting directly or indirectly with 
neurons, astrocytes, microglia, oligodendrocytes, 
endothelial cells and T lymphocytes (Figure 3) [18]. 
First of all, the effect of local ischemia on necrotic 
tissue cannot be ignored. The rupture of blood 
vessels, thromboses and vasospasm, and neurogenic 
hypotension are all caused by the injury and lead to 
the loss of blood. At this point, angiogenesis that can 
relieve the ischemic state is unfortunately directly or 
indirectly inhibited by CXCL10 [24, 133]. This means 
CXCL10 not only directly inhibits differentiation and 
promotes apoptosis of endothelial cells but also works 
together with inflammatory cells to involve in 
subsequent functions [47]. CXCL10 can inhibit the 
expression of various pro-angiogenesis cytokines and 
receptors such as angiogenesis-associated growth 
factor VEGF, the receptors Flt1, Flt4, and the thrombin 
receptor, and the endothelial cell marker CD31 / 
PECAM1 and the growth factor angiopoietin1. It also 
causes apoptosis of vascular endothelial cells by 
oxidative stress as well as a variety of other cytotoxic 
molecules which plays an indirect role in inhibiting 
angiogenesis [24, 131]. 
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Figure 3. CXCL10-related cellular response in SCI-induced neuroinflammation. 

 
Secondly, CXCL10 inhibits axonal regeneration. 

Previous studies have revealed that major phenotypic 
changes that astrocytes undergo are prerequisites for 
promoting spinal cord myelination. Astrocytes release 
CXCL10 to interfere with oligodendrocytes, thereby 
inhibiting the regeneration of axons of the spinal cord 
neurons [105]. In addition, CXCL10 impairs axonal 
extension and inhibits axonal regeneration by 
recruiting inflammatory cells, although the molecular 
mechanisms are poorly understood [25, 134].  

Finally, CXCL10 not only exerts a direct 
apoptosis-promoting effect on neurons and glial cells 
but also recruits CD4+ T lymphocytes secreting 
various cytotoxic molecules such as IFNγ and TNFα 
to induce apoptosis of neurons and glial cells 
[135-137]. 

The Role of CXCL10 in the Complications of 

SCI 

Studies have shown that there is a certain 
correlation between CXCL10 and neuropathic pain, 
joint inflammation, dysfunction of the genitourinary 
system, and pressure sores after SCI. 

Neuropathic Pain 

More than 70% of patients suffer from pain after 
SCI, and about 40% of patients experience chronic 

nerve pain. The pain can last for years and 
significantly impact the physical and emotional 
functions and quality of life [138-140].  

Neuropathic pain has not been sufficiently 
researched to identify the underlying mechanisms. 
Some studies have shown that nerve root damage 
may lead to sprouting of spinal cord fibers and 
activation of primary afferent fibers, causing 
allodynia and hyperalgesia [141, 142]. Several recent 
clinical studies have found that inflammatory 
cytokines and chemokines play an important role in 
the development and persistence of neuropathic pain. 
Statistical analysis of the relationship between 
CXCL10 levels and pain in patients with SCI shows 
that CXCL10 concentrations are positively associated 
with pain intensity [23]. Patients with constant or 
increased CXCL10 over time have an increased risk of 
pain at one-year post-injury [23]. Therefore, CXCL10 
has the potential to serve as a biomarker of pain 
development in SCI patients. In recent years, many 
studies have recognized that the interaction between 
CXCL10 and CXCR3 can participate in neuropathic 
pain in both the spinal cord and brain [55, 126, 
143-148]. In rats with SCI, CXCL10 and CXCR3 are 
significantly expressed in the spinal cord, and 
CXCL10 / CXCR3 interaction is directly involved in 
neuropathic pain by regulating the ERK signaling 
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pathway [55]. 
In addition to its role at the site of injury, 

CXCL10 / CXCR3 interaction is also involved in the 
emotional process of pain by aberrant activation of the 
anterior cingulate cortex (ACC), which is part of the 
limbic system in the frontal region of the cingulate 
cortex. The pain involves affective, sensory, and 
cognitive dimensions [143], and neuronal activity in 
this structure can lead to an aversive emotion to 
noxious stimuli [144, 145]. One study suggests that 
CXCR3 can be increased by enhanced interaction 
between C / EBPα and DNA demethylation post- 
injury and activated by CXCL10 to maintain 
neuropathic pain, via the downstream pERK 
pathway, causing hyperalgesia [146, 147]. And the 
CXCR3 inhibitor AMG487 or (±)-NBI-74330 can 
significantly improve the pain threshold and can 
reduce neuropathic pain [55, 148]. Another study 
showed that only CXCL10 increases excitatory 
synaptic transmission and the risk of pain onset, and 
it also exacerbates existing pain in mice with SCI. In 
contrast, CXCL9 and CXCL11, the same subfamily 
chemokines jointly binding to CXCR3, can enhance 
both excitatory and inhibitory synaptic transmission 
without exacerbating pain [126]. These combined data 
suggest an excellent application prospect of 
anti-CXCL10 means in the treatment of neuropathic 
pain after SCI. 

Joint Inflammation 

Inflammations, heterotopic ossifications, and 
fibrosis have been observed in the joints following SCI 
[149]. In recent years, most studies on joint 
complications after SCI focus on heterotopic 
ossification with an incidence rate of 10-53%. Its 
clinical presentations include pain, fever, redness, 
swelling of surrounding tissues, and limited joint 
movements, followed by the formation of ectopic 
bones in the periarticular connective tissues [150]. 

The exact pathophysiology of the joint 
inflammation remains unclear, while a recent study 
confirms the role of CXCL10 in this disease [151]. 
CXCL10 increases the migration of F4 / 80+ 
macrophages and CD4+ T lymphocytes into the 
synovium in collagen antibody-induced arthritis 
(CAIA) mice through ERK activation mediated by 
CXCR3 [151]. CXCL10 / CXCR3 axis works 
synergistically with TLR4 and increases joint 
inflammations by stimulating the production of 
osteoclastogenic cytokines in CD4+ T lymphocytes 
[151]. 

Dysfunctions of the Genitourinary Systems  

The bladder problem (44%) was one of the most 
common medical problems in patients with SCI [140]. 

SCI blocks the spino-bulbo-spinal reflex pathway, 
resulting in bladder areflexia with complete urinary 
retention [152]. 

CXCL10 is significantly expressed in bladder 
tissues at 8 weeks and 12 weeks after rat SCI and the 
poor prognosis with the low recovery of urination 
function is related to the up-regulated expression of 
chemokines (represented by CXCL10), other 
pro-inflammatory factors and anti-inflammatory 
cytokines [153]. CXCL10 can exert an inhibitory effect 
on the spontaneous recovery of the urination reflex, 
which might be related to the demyelination of 
related neuronal fibers. 

Pressure Sores 

In clinical practice, pressure sores are one of the 
common skin diseases which usually occur after SCI. 
Pressure sores can cause pain and increase the burden 
of nursing, resulting in a dramatic deterioration of 
patients’ life quality. Pressure sores occur commonly 
on the buttocks (31%), lateral thighs (26%), sacrum 
(18%), feet (7%), and ankles (4%) [154]. A recent study 
found that plasma concentrations of CXCL10 are 
associated with the development of pressure sores 
before its first occurrence. CXCL10 has the potential to 
be a biomarker to identify patients at risk for pressure 
sores progression [155]. 

Concluding Remarks 

CXCL10 is involved in the process of acute 
inflammatory responses and secondary damages, and 
many complications after SCI via CXCR3 receptor [18, 
22, 24, 25, 47, 55, 105, 118, 120, 123-127, 129-131, 
133-137, 143-148, 150, 151, 153, 155]. After SCI, 
CXCL10 secreted by microglia plays an important role 
in recruiting and activating inflammatory cells [124, 
125]. CXCL10 and recruited inflammatory cells work 
together to aggravate the inflammatory response, 
inhibit angiogenesis by inhibiting the differentiation 
of endothelial cells, decrease myelin formation by 
inhibiting oligodendrocytes, and then promote 
apoptosis resulting in the progressive loss of tissue at 
the lesion core [24, 25, 47, 105, 133-137]. All these 
effects lead to the inhibition of spinal cord 
regeneration. In addition, CXCL10 causes an 
increased disruption of BBB due to its effects on 
endothelial cells, resulting in CNS homeostasis 
disruption, and exacerbating CNS inflammation [47, 
102, 131]. Furthermore, CXCL10 has proved to be 
associated with four complications after SCI, 
including joint inflammation, neuropathic pain, 
dysfunction of the genitourinary systems, and 
pressure sores [23, 55, 126, 143-148, 151, 155]. 

Existing clinical treatments of SCI include a 
variety of pharmacological and non-pharmacological 
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approaches to alleviate and delay the secondary 
damage cascade after SCI, including sodium 
channel-blocking antiseizure drugs Riluzole, the 
NMDA receptor antagonist magnesium, the antibiotic 
minocycline, the glycosphingolipid GM1 as a kind of 
ganglioside with neuroprotective effects, the 
fibroblast growth factor, the hepatocyte growth factor 
and G-CSF with anti-inflammatory effects. Although 
all these drug treatments have achieved certain 
clinical results, they fail to completely meet the 
expected therapeutic efficiency for patients [156]. 

It is undoubtedly a novel means for the 
treatment of SCI by regulating the immune process 
via the neutralization of pro-inflammatory factors 
[157]. In both the rat and the mouse model mimicking 
SCI, CXCL10 antagonist can reduce T lymphocyte 
infiltration and inhibit neuronal death, thus 
increasing axonal and blood vessel regeneration and 
improving functional recovery after SCI [22, 25, 157, 
158]. 

Despite the encouraging results from these 
aforementioned studies, CXCL10 antagonist alone 
cannot achieve the desired therapeutic effect. 
Although CXCL10 can affect regeneration and 
functional recovery after SCI as a key factor in the 
microenvironment of the injured spinal cord, several 
other growth-inhibiting molecules (chemokine and 
cytokines) also involve in a time-dependent manner 
[159, 160]. For instance, the serum level of TNF-α, 
MCP-1, IL-1β, IL-2, IL-6, IL-4 and IL-10 is highly time 
dependent during the progression of SCI and 
abnormal expression of these cytokines is also related 
to poor neurological outcomes [161]. These findings 
further emphasize that CXCL10, particularly along 
with other factors in the microenvironment of the 
spinal cord, is necessary for SCI deterioration. 
CXCL10-induced inflammation may also play a 
neuroprotective role in the CNS. For instance, 
neurons infected with the neurotropic flavivirus West 
Nile virus can express CXCL10 to promote adaptive 
immune responses to clear the virus, casting a new 
light on the neuroprotective function of CXCL10 [60]. 
And other results show that infiltrating blood-derived 
macrophages displayed an anti-inflammatory 
beneficial role, and microglia prevented lesion 
expansion in brain damage and astrocytes to aid CNS 
axon regeneration in SCI [162-164]. It also suggests 
that inflammation might represent a front-line 
defense against CNS damage. Furthermore, most 
results of CXCL10 antagonist currently available have 
been conducted using animal models with a lack of 
evidence in human beings, and some specific issues 
remain to be solved. For instance, the most 
appropriate therapeutic time window needs further 
evaluation. Different spinal segments with injury 

exhibit differential responses among individuals, 
showing different expression levels of the 
inflammatory cytokines. Taken together, personalized 
treatment strategies are still needed to optimize the 
treatment via targeting CXCL10 signaling pathways 
and the CXCL10 antagonist treatment should be 
combinedly utilized with other therapeutic means. 
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